Reasoning in Paraconsistent Logics

  • James J. Lu
  • Lawrence J. Henschen
  • V. S. Subrahmanian
  • Newton C. A. da Costa
Part of the Automated Reasoning Series book series (ARSE, volume 1)


Databases and knowledge bases could be inconsistent in many ways. For example, if a programmer is constructing an expert system ES relating to a domain D,he does so by consulting several experts (say n in number) in the field D. From each expert d i , 1 ≤ in, he obtains some information, and this may be represented in logic as a collection of sentences, ES i , for 1 ≤ in. The simplest way of combining the resulting knowledge is to set
$$ ES = \bigcup\limits_{i = 1}^n {ES_i .} $$


Nite Prefix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Anderson and W. W. Bledsoe (1970): A Linear Format for Resolution with Merging and a New Technique for Establishing Completeness. JACM 17(3), 525–534.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    N. D. Belnap (1977): A Useful Four-Valued Logic. In: G. Epstein and J. M. Dunn, eds.: Modern Uses of Many-valued Logic. D. Reidel, 8–37.Google Scholar
  3. [3]
    H. A. Blair and V. S. Subrahmanian (1987): Paraconsistent Logic Programming. Proc. 7th Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science 287, 340–360, Springer Verlag. Extended version in: Theoretical Computer Science 68, 135–154.Google Scholar
  4. [4]
    H. A. Blair and V. S. Subrahmanian (1988): Paraconsiistent Foundations for Logic Programming. Journal of Non-Classical Logic 5(2), 45–73.MathSciNetGoogle Scholar
  5. [5]
    C. L. Chang and R. C. T. Lee (1973): Symbolic Logic and Mechanical Theorem Proving. Academic Press.MATHGoogle Scholar
  6. [6]
    P. D. Cheng and J. Y. Juang (1987): A Parallel Resolution Procedure Based on Connection Graph. Proc. Sixth AAAI, 13–17.Google Scholar
  7. [7]
    N. C. A. da Costa (1974): On the Theory of Inconsistent Formal Systems. Notre Dame J. of Formal Logic 15, 497–510.MATHCrossRefGoogle Scholar
  8. [8]
    N. C. A. da Costa and E. H. Alves (1981): Relations between Paraconsistent Logic and Many-valued Logic. Bulletin of the Section of Logic 10, 185–191.MATHGoogle Scholar
  9. [9]
    N. C. A. da Costa, J. J. Lu, V. S. Subrahmanian, and L. J. Henschen (1989): Automatic Theorem Proving in Paraconsistent Logics: Foundations and Experimental Results. Proc. 10th CADE, LNCS, Springer Verlag, 72–86.Google Scholar
  10. [10]
    N. C. A. da Costa, V. S. Subrahmanian, and C. Vago (1989): The Paraconsistent Logics PT. to appear in: Zeitschrift fur Mathematische Logik and Grundlagen der Mathematik, 37, 1991.Google Scholar
  11. [11]
    B. A. Davey and H. A. Priestley (1990): Introduction to Lattices and Order. Cambridge University Press.MATHGoogle Scholar
  12. [12]
    M. C. Fitting (1989): Bilattices and the Theory of Truth. Journal of Philosophical Logic 18, 225–256.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    M. C. Fitting (1988): Logic Programming on a Topological Bilattice. Fundamenta Informatica 11, 209–218.MathSciNetMATHGoogle Scholar
  14. [14]
    M. C. Fitting (1988): Bilattices and the Semantics of Logic Programming. To appear in: Journal of Logic Programming.Google Scholar
  15. [15]
    D. Fishman and J. Minker (1975): 1-Representation: A Clause Representation for Parallel Search. Artificial Intelligence 6, 103–127.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Kifer and T. Krishnaprasad (1989): An Evidence Based Framework for a Theory of Inheritance. Proc. 11th International Joint Conf. on Artificial Intelligence, 1093–1098.Google Scholar
  17. [17]
    M. Kifer and E. Lozinskii (1989): RI: A Logic for Reasoning with Inconsistency. LICS-89.Google Scholar
  18. [18]
    M. Kifer and J. Wu (1989): A Logic for Object Oriented Logic Programming. Proc. 8th ACM Symp. on Principles of Database Systems, 379–393.Google Scholar
  19. [19]
    D. W. Loveland (1970): A Linear Format for Resolution. Proc. IRIA Symp. on Automatic Demonstration, Lecture Notes in Mathematics, Springer, 147–162.Google Scholar
  20. [20]
    D. W. Loveland (1972): A Unifying View of some Linear Herbrand Procedures. JACM 19, 366–384.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    J. J. Lu, L. J. Henschen, V. S. Subrahmanian and N. C. A. da Costa (1990): Automated Deduction in Paraconsistent Logics. The full version of this paper. Tech Report, Northwestern University.Google Scholar
  22. [22]
    J. Roberge (1988): Distributed Resolution-based Theorem Proving Systems. Ph. D. Thesis, Northwestern University.Google Scholar
  23. [23]
    V. S. Subrahmanian (1987): On the Semantics of Quantitative Logic Programs. Proc. 4th IEEE Symposium on Logic Programming, Computer Society Press, Washington DC, 173–182.Google Scholar
  24. [24]
    V. S. Subrahmanian (1989): Algebraic Properties of the Space of Multivalued and Paraconsistent Logic Programs. Proc. 9th Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science, LNCS 405, Springer-Verlag, 56–67.Google Scholar
  25. [25]
    L. Wos, D. Carson, and G. Robinson (1964): The Unit Preference Strategy in Theorem Proving. Proceedings of the AFIPS Conference 26, 615–621.Google Scholar
  26. [26]
    L. Wos (1988): Automated Reasoning: 33 Research Problems. Prentice Hall.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • James J. Lu
    • 1
  • Lawrence J. Henschen
    • 1
  • V. S. Subrahmanian
    • 2
  • Newton C. A. da Costa
    • 3
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.University of Sao PauloBrazil

Personalised recommendations