Chaotic Inflation and the Omega Problem

  • G. J. Mathews
  • F. Graziani
  • H. Kurki-Suonio
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)


An overview of the omega problem is presented along with discussions of several ways to resolve this problem in the context of chaotic and stochastic inflation.


Lawrence Livermore National Laboratory Inflaton Field Closure Parameter Primordial Nucleosynthesis Classical Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audouze, J. 1990 (this Conf. Proc.).Google Scholar
  2. Bahcall, S. R. and Tremaine, S. 1988, Ap. J. Lett., 326, L1ADSCrossRefGoogle Scholar
  3. Bardeen, J. and Bublik, G. J. 1987, Class. Quant Gray., 4, 573.MathSciNetADSCrossRefGoogle Scholar
  4. Caditz, D. and Petrosian, V. 1989, Ap. J. Lett., 337, L65.ADSCrossRefGoogle Scholar
  5. Davis, M. and Peebles, P. J. E. 1983, Ann. Rev. Astr. Ap., 21, 109.ADSCrossRefGoogle Scholar
  6. Fukugita, M. 1990 (this Conf. Proc.); and “Proc. 3rd Nishinomiya Yukawa Memorial Symposium,” Nishinomiya, Japan, 10–11 Nov. 1988.Google Scholar
  7. Fukugita, M., Takahara, F., Yamashita, K., and Yoshii, Y. 1990, Submitted to Ap. J. Google Scholar
  8. Goncharov, A. S., Linde, A. D., and Mukhanov, V. F. 1987, Int. J. Mod. Phys., A2, 561.MathSciNetADSGoogle Scholar
  9. Graziani, F. 1988, Phys. Rev., D38, 1122, 1131, 1808.MathSciNetADSGoogle Scholar
  10. La, D. and Steinhardt, P. J. 1989, Phys. Rev. Lett., 62, 376.ADSCrossRefGoogle Scholar
  11. Linde, A. D. 1983, Phys. Lett., B129177.MathSciNetADSGoogle Scholar
  12. Loh, E. and Spillar, E. J. 1986, Ap. J. Lett., 307, Ll.ADSCrossRefGoogle Scholar
  13. Mathews, G. J., Meyer, B. S., Alcock, C. R., and Fuller, G. M. 1990, Ap. J., 358, 36.ADSCrossRefGoogle Scholar
  14. Nambu, Y. and Sasaki, M. 1989, Phys. Lett., B219, 240.ADSGoogle Scholar
  15. Nambu, Y. and Sasaki, M. 1989, Phy. Lett., B219, 240.ADSGoogle Scholar
  16. Ortolan, A., Lucchin, F., and Matarrese, S. 1988, Phys. Rev., D 38, 465.ADSGoogle Scholar
  17. Peebles, P. J. E. 1976, Ap. J., 205, 318.ADSCrossRefGoogle Scholar
  18. Rey, S. J. 1987, Nucl. Phys., B284, 706.ADSCrossRefGoogle Scholar
  19. Sandage, A. 1988, Ann. Rev. Astron. Ap, 26, 561.ADSCrossRefGoogle Scholar
  20. Sato, K. 1990 (this Conf. Proc.).Google Scholar
  21. Starobinsky, A. A. 1984, in Fundamental Interactions, V. N. Ponomarev, ed., ( MPGI press, Moskow ) p. 54.Google Scholar
  22. Steigman, G. 1990 (this Conf. Proc.).Google Scholar
  23. Steinhardt, P. J. 1990, Nature, 345, 47.ADSCrossRefGoogle Scholar
  24. Yahil, A., Walker, D., and Rowan-Robinson, M. 1986, Ap. J. Lett., 301 Ll.ADSCrossRefGoogle Scholar
  25. Yoshii, Y. and Takahara, F. 1988, Ap. J., 326, 1.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • G. J. Mathews
    • 1
  • F. Graziani
    • 1
  • H. Kurki-Suonio
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations