Advertisement

The Influence of Relaxation Processes in Matrices on the Spectroscopic Properties of the Solvated Electron

  • H. Abramczyk
  • J. Kroh
Part of the NATO ASI Series book series (ASIC, volume 379)

Abstract

The near IR and visible absorption spectra of solvated electrons in water, alcohols, amines were calculated in terms of the electron-vibron coupling. The role of the H-bond is discussed.

Keywords

Electron Spin Resonance Trap Electron Excess Electron Solvate Electron Band Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxendale,J.H. Wardman,P.(1971)‘Direct observation of solution of the electron in liquid alcohols by pules radiolysis’, Nature,230,449CrossRefGoogle Scholar
  2. 2.
    Baxendale,J.H. Wardman,P.(1973)‘ Electrons in liguid alcohols at low temperature’, J.Chem.Soc.Faraday Trans.I,69,584CrossRefGoogle Scholar
  3. 3.
    Buxton,G.V. Gillis,H.A. Klassen,N.V. (1976)‘Evidence for a second kind of trapped electron in some deuterated agueous glasses at low temperatures. A pulse radiolysis study’, Can.J.Chem.,54,367CrossRefGoogle Scholar
  4. 4.
    Buxton,G.V. Kawabata,K. Salmon,G.A. (1978) ‘Yields of trapped electrons in pulse irradiated aqueous LiCl glasses at temperatures down to 6 K’,Chem.Phys. Lett. ,60,48CrossRefGoogle Scholar
  5. 5.
    Kawabata,K. Buxton,G.V. Salmon,G.A.(1979)‘Temperature dependence of trapped electrons in crystalline D 0 ice from 77 to 6 K’, Chem.Phys.Lett.,64,487CrossRefGoogle Scholar
  6. 6.
    Ogasawara,M. Shimizu,K. Yoshida, K. Kroh,J. Yoshida,H. (1979) ‘On the spectral shift of trapped electrons in glassy alcoholos irradiated at 4.2 K’, Chem.Phys.Lett. ,64,43CrossRefGoogle Scholar
  7. 7.
    Ogasawara,M. Shimizu,K. Yoshida,H. (1981) ‘Evolution of the spectra of the localized electrons in glassy alcohols irradiated at 4 K’,Radiat.Phys.Chem. ,17,331Google Scholar
  8. 8.
    Higashimura,T.(1974)‘Electron scavening at very low temperature’ Int. J.Radiat.Phys.Chem.,6, 393CrossRefGoogle Scholar
  9. 9.
    Hase,H. Kawabata,K.(1976)‘Trapped electron in crystalline D2 0 ice at 4 K’,J.Chem.Phys. ,65,64CrossRefGoogle Scholar
  10. 10.
    Buxton,G.V. Gillis,H.A. Klassen,N.V. (1977) ‘Two types of localized excess electrons in crystalline D2 0 ice’, Can.J.Chem. ,55, 2385CrossRefGoogle Scholar
  11. 11.
    van Leeuwen,J.W. Heijman,M.G. J. Nauta,H.(1981)‘A study of the temperature dependence of the visible absorption band of trapped electrons in ethylene glycol-water and LiCl glasses between and 100 K’ ,Radiat.Phys.Chem.,17,367Google Scholar
  12. 12.
    Chase, W. J. Hunt, J. W. (1975)‘Solvation time of the electron in polar liquids. Water and alcohols’,J.Phys.Chem.,79,2835CrossRefGoogle Scholar
  13. 13.
    Rentzepis,P.M. Jones,R.P. Jortner,J.(1973)‘Dynamics of solvation of an excess electron’,J.Chem.Phys. ,59,766CrossRefGoogle Scholar
  14. 14.
    Buxton, G. V. Kroh,J. Salmon, G. A. (1981) ‘Electron trapping in glassy normal alcohols. A pulse radiolysis study at temperatures down to 6 K’,J.Phys.Chem.,85,2021CrossRefGoogle Scholar
  15. 15.
    Klassen,N.V Gillis,H.A. Teather,G.G Kevan,L. (1975) ‘Pulse radiolysis studies of time dependent spectral shifts of the solvated electron in ethanol glasses at 76 K’,J.Chem.Phys., 62,2474CrossRefGoogle Scholar
  16. 16.
    Hase,H. Noda,M. Higashimura,T. (1971) Electronic spectra of trapped electrons in organic glasses at 4 K’,J.Chem.Phys., 54,2975CrossRefGoogle Scholar
  17. 17.
    Shida,T. Iwata,S. Watanabe,T. (1972) ‘Electronic absorption spectra of excess electrons in molecular aggregates. I. Trapped electrons in γ-irradiated amorphous solids at 77 K’ , J. Phys.Chem.,76, 3683CrossRefGoogle Scholar
  18. 18.
    Klassen,N.V. Teather,G.G.(1983)’“Initial” spectra of trapped electrons in alcohol glasses from 12 to 115 K’,J.Phys.Chem., 87,3894CrossRefGoogle Scholar
  19. 19.
    Nguyen,T.Q. Walker,D.C. Gillis,H.A. (1978) ’Evolution of the spectrum of the solvated electron in BeF2 aqueous glasses at 76K J. Chem.Phys.,69,1038CrossRefGoogle Scholar
  20. 20.
    Kevan,L. (1980) ‘Current problems in the localization and solvation of excess electrons in glasses’, J.Phys.Chem.,84,1232CrossRefGoogle Scholar
  21. 21.
    Rossky,J. Schnitker,J, (1988) ‘The hydrated electron: quantum simulation of structure, spectroscopy and dynamics’,J.Phys.Chem. 92,4277CrossRefGoogle Scholar
  22. 22.
    Barnett,R.B. Landman,U. Nitzan,A. (1989) ‘Relaxation dynamics following transition of solvated electrons’, J.Chem.Phys., 90,4413CrossRefGoogle Scholar
  23. 23.
    Fueki,K. Feng,D. Kevan,L.(1972) ‘Application of the semicontinuum model of the effect of dipole reorientation on trapped electron spectra in glassy ethanol’,J.Chem.Phys. , 56,5351CrossRefGoogle Scholar
  24. 23a.
    a.Migus,A. Gauduel,Y. Martin,J.L. Antonetti,A. (1987) ‘Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime’,Phys.Rev.Lett.,58,1559CrossRefGoogle Scholar
  25. 24.
    Ogg,R.A.Jr (1946) ‘Electronic processes in liquid dielectric media. The properties of metal-ammonia solutions’J. Am. Chem.Soc., 68,155CrossRefGoogle Scholar
  26. 25.
    Newton,M.D. (1975) ‘The role of ab initio calculations in elucidating properties of hydrated and ammoniated electrons’,J. Phys.Chem.,79,2795CrossRefGoogle Scholar
  27. 26.
    Clark,T. Illing,G. (1987) ‘ Ab initio localized electron calculations on solvated electron structures’ ,J. Am. Chem.Soc.,109,1013CrossRefGoogle Scholar
  28. 27.
    Fueki,K. Feng,D.F. Kevan,L. Christofferson,R. E. (1971) ‘A semicontinuum model for the hydrated electron. II. Configurational stability of the ground state’, J. Phys.Chem., 75,2297CrossRefGoogle Scholar
  29. 28.
    Kestner,N.R. Jortner,J.(1984) ‘Studies of the stability of negatively charged water clusters’, J. Phys. Chem.,88,3818CrossRefGoogle Scholar
  30. 29.
    Dawes,S.B. Ward,D.L. Huang,R.H. Dye,J. L. (1986) ‘First electride crystal structure’,J.Am.Chem. Soc. , 108,353CrossRefGoogle Scholar
  31. 30.
    Symons,M.C.R.(1988) ‘Aquated electrons, H2 o- anions and OH-/H3 0 units’ ,J.Phys.Chem.,92,7260CrossRefGoogle Scholar
  32. 31.
    Webster,B. (1975) ‘Ab-initio studies into the mechanisms of formation of the hydrated electron’,J.Phys.Chem.,79,2809CrossRefGoogle Scholar
  33. 32.
    Tuttle,T.R.Jr Golden,S.(1979) ‘Model potentials and the optical spectra of solvated electrons’, J.Chem.Soc. Faraday Trans.2, 75,1146CrossRefGoogle Scholar
  34. 33.
    Tuttle,T.R.Jr. Golden,S.(1980) ‘Resolution of optical spectra of solvated electrons in water’, J.Phys.Chem.,84,2457CrossRefGoogle Scholar
  35. 34.
    Tuttle,T.R.Jr. Golden, S. (1981) ‘Shape stability of solvated-electron optical absorption bands’,J.Chem.Soc.Faraday Trans.2, 77, 873,889,1421CrossRefGoogle Scholar
  36. 35.
    Golden,S. Tuttle,T.R.Jr. (1984) ‘Limitation on determining excess-electron structures by magnetic resonance methods’, J. Phys.Chem.,88,3781CrossRefGoogle Scholar
  37. 36.
    Razem,D. Hamill,W. H. (1978) ‘Activated and activationless localization and impurity trapping of the electron in C2 H5 OH and C2 H5 0D’ J. Phys. Chem. ,82,488Google Scholar
  38. 37.
    Jortner,J. (1962)’ Mol.Phys.,5,257CrossRefGoogle Scholar
  39. 37a.
    Jortner,J. (1959) ‘Energy levels of bound electrons in liquid ammonia’, J.Chem.Phys.,36,839CrossRefGoogle Scholar
  40. 38.
    Feng,D-F. Kevan,L. (1980) ‘Theoretical models for solvated electrons’, Chem.Rev. , 80,1CrossRefGoogle Scholar
  41. 39.
    Rao,B.K. Kestner,N.R.(1984) ‘Ab initio calculations on negatively charged water clusters’,J.Chem.Phys.,80,1587CrossRefGoogle Scholar
  42. 40.
    Barnett,R.N. Landman,U. Nitzan,A (1989) ‘Dynamics of excess electron migration, solvation and spectra in polar molecular clusters’,J.Chem.Phys.,91,5567CrossRefGoogle Scholar
  43. 41.
    Sprik,M. Klein,M.L.(1988) ‘Optimization of a distributed Gaussian basis set using simulated annealing: Application to the adiabatic dynamics of the solvated electron’J.Chem.Phys.,89,1592CrossRefGoogle Scholar
  44. 42.
    Sprik,M. Klein,M.L.(1989) ‘Adiabatic dynamics of the solvated electrron in liquid ammonia’,J.Chem.Phys. ,91,5665CrossRefGoogle Scholar
  45. 43.
    Wallqvist,A. Thirumalai, D. Berne,B.J. (1987) ‘Path integral Monte Carlo study of the hydrated electron’ ,J. Chem.Phys.,86,6404CrossRefGoogle Scholar
  46. 44.
    Webster,B.(1980) ‘Some new perspectives for excess electron theory and experiment. Linking the microscopic with the macroscopic’,J.Phys.Chem. , 84,1070CrossRefGoogle Scholar
  47. 45.
    Haberland,H. Ludwight,Ch. Schinden,H. G. Worshop,D.R. (1984) ‘Experimental observation of the negatively charged water dimer and other small (H 0)n clusters’, J.Chem.Phys.,81,3742CrossRefGoogle Scholar
  48. 46.
    Holton,D. Edwards,P.P McFarlane,W. Wood,B. (1983) ‘ Multinuclear NMR study of the solvated electron in lithium-methylamine solutions’,J.Am.Chem.Soc.,105,2104CrossRefGoogle Scholar
  49. 47.
    Kenney-Wal lace,G. A. Jonah, C.D. (1982) ‘Picosecond spectroscopy and solvation clusters. The dynamics of localizing electrons in polar fluids’,J.Phys.Chem.,86,2572CrossRefGoogle Scholar
  50. 48.
    Funabashi,K. Carmichael, I. Hamill,W.H. (1978) ‘ Photon-induced electron transfer transitions of the solvated electrons’, J. Chem.Phys.,69,2652CrossRefGoogle Scholar
  51. 49.
    Walker,D. C. (1980) ‘Dynamics of electron localization’, J.Phys.Chem. ,84,1140CrossRefGoogle Scholar
  52. 50.
    Callef,D.F. Wolynes,P.G.(1983)’Smoluchowski-Vlasov theory of charge solvation dynamics’, J.Chem. Phys.,78,4145CrossRefGoogle Scholar
  53. 51.
    Banerjee,A Simons,J.(1978)‘Excess electrons in condensed media: theory of optical absorption spectrum in molecular solutions’,J. Chem. Phys. ,68,415CrossRefGoogle Scholar
  54. 52.
    Copeland, D.A Kestner,N.R. Jortner,J (1970)‘Excess electrons in polar solvents’, J. Chem. Phys. ,53,1189CrossRefGoogle Scholar
  55. 53.
    Abramczyk,H.(1991)‘Absorption spectrum of the solvated electron. 1. Theory’ ,J.Phys.Chem.,95,6149CrossRefGoogle Scholar
  56. 54.
    Abramczyk,H. Kroh, J.(1991)‘Absorption spectrum of the solvated electron. 2. Numerical calculation of the profiles in water and methanol at 300 K’,J.Phys.Chem. ,95,6155CrossRefGoogle Scholar
  57. 55.
    Abramczyk,H. Kroh,J.(1991)‘Absorption spectrum of the solvated electron in ammonia and amines’, J.Phys.Chem.,95,5749CrossRefGoogle Scholar
  58. 56.
    Abramczyk,H Kroh,J. (1991‘Absorption spectra of a solvated electron in ethers’,Chem.Phys. , in pressGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • H. Abramczyk
    • 1
  • J. Kroh
    • 1
  1. 1.Institute of Applied Radiation ChemistryTechnical UniversityŁódźPoland

Personalised recommendations