Advertisement

Yang Mills fields and symmetry breaking: From Lie super-algebras to non commutative geometry

  • R. Coquereaux
Part of the Mathematical Physics Studies book series (MPST, volume 13)

Abstract

We describe a fonnalism using both ideas of non commutative geometry and of Lie super-algebras to describe the geometry of Yang Mills fields and symmetry breaking.

Keywords

Standard Model Higgs fields Lie Superalgebras non commutative geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Connes, J. Lott, Particle models and Non-commutative geometry, in “Recent Advances in Field Theory”, Nucl. Phys. (Proc. Suppl.) B18, eds P. Binetruy et al. North Holland (1990) 29–47.Google Scholar
  2. [2]
    A. Connes, Geometrie Non Commutative, InterEditions, Paris, (1990)Google Scholar
  3. [3]
    R. Coquereaux, G. Esposito-Farese, G. Vaillant, Higgs fields as Yang-Mills fields and discrete symmetries, Nucl. Phys. B353 (1991) 689–706.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Coquereaux, G. Esposito-Farese and F. Scheck The theory of electro weak interactions described by SU(2 1) algebraic superconnections. CPT-91 /P.E. 2464Google Scholar
  5. [5]
    R. Coquereaux, R. Häußling, N.A. Papadopoulos, F. Scheck Generalized gauge transformations and hidden symmetry in the Standard Model, Int. Journ. of Mod.Phys.A (in print)Google Scholar
  6. [6]
    Y. Ne’eman, Irreducible gauge theory of a consolidated Salam-Weinberg model, Phys. Lett. B81 (1979) 190–194MathSciNetADSGoogle Scholar
  7. [7]
    Y. Ne’eman, J. Thiery-Mieg, Exterior gauging of an internal supersymmetry and SU(2) quantum asthenodynamics, Proc. Nat. Acad. Sci. USA 79 (1982) 7068–7072ADSCrossRefGoogle Scholar
  8. [8]
    P.H. Dondi, P.D. Jarvis, A supersymmetric Weinberg-Salam model, Phys. Lett. B84 (1979) 75–78MathSciNetADSGoogle Scholar
  9. [9]
    M. Scheunert, W. Nahm, V. Rittenberg, Irreducible representations of the osp(2,1) and spl(2|1) graded Lie algebras, J. Math. Phys. 18 (1977) 155–162MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    M. Marcu, The representations of spl(2|1), J. Math. Phys. 21 (1980) 1277–1283MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    A. Connes, Non-Commutative Differential Geometry, Publ. Math. IHES 62 (1985) 41.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • R. Coquereaux
    • 1
  1. 1.Centre de Physique ThéoriqueCNRS Luminy - Case 907Marseille Cedex 9France

Personalised recommendations