Dynamics Of Periodic Comets And Meteor Streams

  • V. V. Emel’yanenko
Conference paper


The methods for an investigation of the evolution of orbits with large eccentricities are presented. The role of resonances in the motion of comets is considered. The expansion of the disturbing function in the restricted three-body problem is obtained for cometary orbits. The method is based on the proximity of cometary eccentricities to 1. The Hamiltonian describing the basic perturbations in the motion of long-period comets is constructed. It leads to mappings for the description of cometary dynamics.

The long-term evolution of short-period comets is considered. The importance of temporary librations near commensurabilities with Jupiter is emphasized. The analytical dependence of the diffusion rate upon the orbital elements of nearly-parabolic comets is found. The results of calculations of the diffusion rate taking into account perturbations from the outer planets are presented. A numerical study of cometary dynamics using mappings is carried out. A distribution like the Oort cloud is a typical stage of the evolution of comets in nearly-parabolic orbits under planetary perturbations.

A change of the partial density of meteor streams is studied. For the case of librations the dispersion speed of meteor streams under the action of planetary perturbations is substantially less than that for the case of typical chaos. A similarity between the observed structure of the meteor streams and resonant properties of the motion is discussed.


Resonance libration chaos diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badazhanov, P.B.: 1987, Meteors and their Observations (in Russian), Nauka, MoskvaGoogle Scholar
  2. Boda, K.: 1931, ‘Entwicklung der Storungfunction and Ableitungen in Reihen, welche für beliebige Exzentrizitaten und Neigungen konvergieren’, Astron. Nachrichten 243, 17–42ADSCrossRefGoogle Scholar
  3. Carusi, A. and Valsecchi, G.B.: 1987, ‘Dynamical Evolution of Short-Period Comets’, Publ. Astron. Inst. Czechosl. Acad. Sci. 67, 21–28ADSGoogle Scholar
  4. Charlier, C.L.: 1927, Die Mechanik des Himmels, Walter de Gruyter, Berlin-LeipzigzbMATHGoogle Scholar
  5. Chirikov, B.V: 1979, ‘A Universal instability of Many-Dimensional Oscillator Systems’, Phys. Rep. 52,263–379MathSciNetADSCrossRefGoogle Scholar
  6. Chirikov, B.V and Vecheslavov, V.Y.: 1986, Chaotic Dynamics of Comet Halley, Inst. of Nuclear Physics Preprint 86–184, NovosibirskGoogle Scholar
  7. Duncan, M., Quinn, T. and Tremaine, S.D.: 1987, ‘The Formation and Extent of the Solar System Comet Cloud’, Astron. J. 94, 1330–1338ADSCrossRefGoogle Scholar
  8. Elenevskaya, N.B.: 1962, ‘Expansion of the Disturbing Function for an Eccentricity near 1’, Bull. Inst. Teor. Astron. (in Russian) 8, 444–456Google Scholar
  9. Emel’yanenko, V.V.: 1984, ‘On the Evolution of the Density of Meteor Streams due to Planetary Perturbations’, Pis’ma Astron. Zh. (in Russian) 10, 315–318ADSGoogle Scholar
  10. Emel’yanenko, V.V.: 1987, ‘On the Dynamics of Short-Period Comets’, Kinematika i Fizika Nebesnykh Tel (in Russian) 3, 52–56ADSGoogle Scholar
  11. Emel’yanenko, V.V.: 1988a, ‘The Motion of Meteor Streams near the Commensurabilities with Jupiter’, Pis’ma Astron. Zh. (in Russian) 10, 651–658ADSGoogle Scholar
  12. Emel’yanenko, V.V.: 1988b, ‘Peculiarities of Cometary Resonance Motion’, Kinematika i Fizika Nebesnykh Tel (in Russian) 4, 55–59ADSGoogle Scholar
  13. Emel’yanenko, V.V.: 1990a, ‘The Resonance Model of a Meteor Stream’, Kinematika i Fizika Nebesnykh Tel (in Russian) 6, 58–65ADSGoogle Scholar
  14. Emel’yanenko, V.V.: 1990b. ‘The Motion of Nearly-Parabolic Comets under the Weak Perturbations of Planets’, Pis’ma Astron. Zh. (in Russian) 16, 737–744ADSGoogle Scholar
  15. Emel’yanenko, V.V.: 1990c, ‘Dynamics of the Lyrid Meteor Stream’, Astron. Vestnik (in Russian) 24, 308–313ADSGoogle Scholar
  16. Emel’yanenko, V.V.: 1991, ‘An Expansion for the Secular and Resonant Parts of the Disturbing Function in the Theory of Long-Period Comets Motion’, Pis’ma Astron. Zh. (in Russian) 17, 857–864ADSGoogle Scholar
  17. Everhart, E.: 1968, ‘Change in Total Energy of Comets Passing through the Solar System’, Astron. J. 73, 1039–1052ADSCrossRefGoogle Scholar
  18. Everhart, E.: 1974, ‘Implicit Single-Sequence Methods for Integrating Orbits’, Celest. Mech. 10, 35–55MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. Fernandez, J.A.: 1981, ‘New and Evolved Comets in the Solar System’, Astron. Astrophys. 96, 26–35ADSGoogle Scholar
  20. Franklin, F.A., Marsden, B.G. and Williams, J.G.: 1975, ‘Minor Planets and Comets in Libration about the 2:1 Resonance with Jupiter’, Astron. J. 80, 729–746ADSCrossRefGoogle Scholar
  21. Giacalgia, G.E.O.: 1972, Perturbations Methods in Non-linear Systems, Springer-Verlag, New York Heidelberg-BerlinGoogle Scholar
  22. Kazimirchak-Polonskaya, E.I.: 1978, ‘Capture of Comets by Jupiter and Some Regularities in Secular Evolution of Cometary Orbits’, Problemi Issledovania Vselennoi (in Russian) 7, 340–383Google Scholar
  23. Krasinsky, G.A.: 1973, in N.S. Samoilova-Yachontova ed., ed(s)., Basic Equations of Planetary Theory in Minor Planets, Nauka, Moskva, 81–107Google Scholar
  24. Lichtenberg, A.J. and Lieberman, M.A.: 1983, Regular and Stochastic Motion, Springer-Verlag, New York-Heidelberg-BerlinzbMATHGoogle Scholar
  25. Marsden, B.G.: 1970, ‘On the Relationship between Comets and Minor Planets’, Astron. J. 75, 206–217ADSCrossRefGoogle Scholar
  26. Marsden, B.G.: 1986, Catalogue of Cometary Orbits, Smithsonian Astrophys. Observatory, Cambridge, MassachusettsGoogle Scholar
  27. Milani, A. and Nobili, A.M.: 1985, in A. Carusi and G.B. Valsecchi, Eds., ed(s)., Errors in Numerical Integrations and Chaotic Motions, Dynamics of Comets: Their Origin and Evolution, 215–226Google Scholar
  28. Petrosky, T.Y.: 1986, ‘Chaos and Cometary Clouds in the Solar System’, Physics Letters A 117, 328–382ADSGoogle Scholar
  29. Petrovskaya, M.S.: 1970, ‘Expansion of the Negative Powers of Mutual Distances between Bodies’, Celest. Mech. 3, 121–128MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. Porubcan, V. and Gevolani, G.: 1985, ‘Unusual Display of the Lyrid Meteor Shower in 1982’, Prace Astronomiskeho Observatoria Na Skalnalom Plese 13, 247–253ADSGoogle Scholar
  31. Rickman, H. and Froeschle, C.: 1988, ‘Cometary Dynamics’, Astron. Observatory Uppsala Preprint 29 Google Scholar
  32. Schubart, J.: 1968, ‘Long-Period Effects in the Motion of Hylda-Type Planets’, Astron. J. 73,99–103ADSCrossRefGoogle Scholar
  33. Stagg, C.R. and Bailey, M.E.: 1989, ’stochastic Capture of Short-Period Comets’, Monthly Notices Roy. Astron. Soc. 241, 507–541ADSGoogle Scholar
  34. Yabushita, S.: 1979, ‘A Statistical Study of the Evolution of the Orbits of Long-Period Comets’, Monthly Notices Roy. Astron. Soc. 187,445–462ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • V. V. Emel’yanenko
    • 1
  1. 1.Department of MathematicsTechnical UniversityChelyabinskUSSR

Personalised recommendations