Development of Sound Representation in the Auditory Cortex of Tree Shrews (Tupaia Belangeri): A [14C]-2-Dg Study

  • H. Binz
  • E. Zimmermann
  • H. Rahmann
Part of the NATO ASI Series book series (ASID, volume 68)


The [14C]-2-deoxyglucose (2-DG) technique was used to determine wether this technique allows to localize, map and differentiate effects of acoustically defined communicative or non-communicative sounds on the auditory cortex (AC) of adult and developing tree shrews (Tupaia belangeri). Discrete stimulus-specific patterns of increased 2-DG labelling were observed in auditory cortex of adult tupaias and imply a tonotopic organization. First at 18 days after birth (DAB) sound stimulation produced enhanced patterns of 2-DG uptake, however, quite different from those of adults. Labelling at that time was concentrated in rostral parts of the AC at places, where in adults higher frequencies are represented. At 39 DAB sound-induced labelling corresponded to that of adults. Different effects of communicative or non-communicative stimuli on functional activity of the auditory cortex were found shortly after onset of hearing, but were not as discrete as in adults, suggesting that epigenetic influences might be involved in shaping sound perception in tree shrews.


Auditory Cortex Inferior Colliculus Mongolian Gerbil Tree Shrew Central Auditory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin L. M. and Moore D. R. (1975) ‘Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in the central nucleus of the neonatal cat’, J. Neurophysiol. 38, 1208–1216.PubMedGoogle Scholar
  2. Aitkin L. M., Merzenich M. M., Irvine D. R. F., Clarey j. C. and Nelson J. E. (1986) ‘Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus)’, J. Comp. Neurol. 252, 175–185.PubMedCrossRefGoogle Scholar
  3. Aitkin L. (1990) The Auditory Cortex, Chapman and Hall, London, New York.Google Scholar
  4. Arjmand E., Harris D. and Dallos P. (1988) ‘Developmental changes in frequency mapping of the gerbil cochlea: Comparison of two cochlear locations’, Hear. Res. 32, 93–96.PubMedCrossRefGoogle Scholar
  5. Benson B., Binz H. and Zimmermann E. (1992) ‘Vocalizations of infant and developing tree shrews (Tupaia belangeri)’, J. Mammalogy, 93(1), 106–119.CrossRefGoogle Scholar
  6. Binz H. and Zimmermann E. (1989) ‘The vocal repertoire of adult tree shrews (Tupaia belangeri)’, Behaviour 109, 142–162.CrossRefGoogle Scholar
  7. Binz H., Schobel G., Zimmermann E. and Rahmann H. (1990) ‘Changes in sound perception and metabolic brain activity in tree shrews (Tupaia belangeri) during ontogeny’ in N. Elsner and G. Roth (eds.), Brain, Perception, Cognition, Georg Thieme Verlag, Stuttgart, p. 161.Google Scholar
  8. Braitenberg V. and Schilz A. (1991) Anatomy of the Cortex, Springer-Verlag, Berlin. Brugge J. F. (1982) ‘Auditory cortical areas in primates’, in C. N. Woolsey (ed.) Cortical Sensory Organization, Vol. 3, Multiple Auditory Areas, Humana, Clifton, pp. 59–70.Google Scholar
  9. Burda H. and Branis M. (1988) ‘Postnatal development of the organ of Corti in the wild house mouse, laboratory mouse and their hybrid’, Hear. Res. 36, 97–106.PubMedCrossRefGoogle Scholar
  10. Caird D., Scheich H. and Klinke R. (1991) ‘Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): Binaural 2-deoxyglucose patterns’, J. Comp. Physiol. A 168, 13–26.PubMedCrossRefGoogle Scholar
  11. Casseday J., Diamond K. and Harting J. (1976) ‘Auditory pathway to the cortex of Tupaia glis’, J. Comp. Neurol. 166, 303–340.PubMedCrossRefGoogle Scholar
  12. Casseday J. H. Jones D. R. and Diamond I. T. (1979) ‘Projections from cortex to tectum in the Tree shrew, Tupaia glis’ J. Comp. Neurol. 185, 253–292.PubMedCrossRefGoogle Scholar
  13. Coleman J. R. (1990) ‘Development of auditory system structures’, in J. R. Coleman (ed.), Development of Sensory Systems in Mammals, John Wiley & Sons Inc., pp. 205–247.Google Scholar
  14. Colombo M., D’Amato M. R., Rodman H. R. and Gross C. G. (1990) ‘Auditory association cortex lesions impair auditory short-term memory in monkeys’, Science 247, 336–338.PubMedCrossRefGoogle Scholar
  15. Covey E., Jones D. R. and Casseday J. H. (1984) ‘Projections from the superior olivary complex to the cochlear nucleus in the tree shrew’, J. Comp. Neurol. 226, 289–305.PubMedCrossRefGoogle Scholar
  16. Cusick C. G., MacAvoy M. G. and Kaas J. H. (1985) ‘Interhemispheric connections of cortical sensory areas in tree shrews’, J. Comp. Neurol. 235, 111–128.PubMedCrossRefGoogle Scholar
  17. Echteler S. M., Arjmand E. and Dallos P. (1989) ‘Developmental alterations in the frequency map of the mammalian cochlea’, Nature 341, 147–149.PubMedCrossRefGoogle Scholar
  18. Harris D. M. and Dallos P. (1984) ‘Ontogenetic changes in frequency mapping of a mammalian ear’, Science 225, 741–742.PubMedCrossRefGoogle Scholar
  19. Heffner H. E., Ravizza R. J. and Masterton B. (1969) ‘Hearing in primitive mammals III, Tree shrew (Tupaia glis)’, J. Audit. Res. 9, 12–18.Google Scholar
  20. Heffner H. E. and Heffner R. S. (1989) ‘Effect of restricted cortical lesions on absolute thresholds and aphasia-like deficits in Japanese macaques’, Behav. Neurosci. 103/1, 158–169.PubMedCrossRefGoogle Scholar
  21. Heil P. and Scheich H. (1986) ‘Effects of unilateral and bilateral cochlea removal on 2-deoxyglucaose patterns in the chick auditory system’, J. Comp. Neurol. 252, 279–301.PubMedCrossRefGoogle Scholar
  22. Hertenstein B., Zimmermann E. and Rahmann H. (1987) ‘Zur Reproduktion und ontogenetischen Entwicklung von Spitzhörnchen (Tupaia belangeri)’, Z. Kölner Zoo 30, 119–133.Google Scholar
  23. Hose B., Langner G. and Scheich H. (1987) ‘Topographic representations of periodicities in the forebrain of the mynah bird: one map for pitch and rythm’, Brain Res. 422, 367–373.PubMedCrossRefGoogle Scholar
  24. Hungerbühler J.-P., Saunders J. C., Greenberg J. and Reivich M. (1981) ‘Functional neuroanatomy of the auditory cortex studied with (2–14C)Deoxyglucose’, Exp. Neurol. 71, 104–121.PubMedCrossRefGoogle Scholar
  25. Jones D. R., Casseday J. H. and Diamond I. T. (1976) ‘Further study of parallel auditory pathways in the tree shrew, Tupaia glis’, Anat. Rec. 184, 438–439.Google Scholar
  26. Kaas J. H. (1987) ‘The organization of neocortex in mammals: Implications for theories of brain function’, Ann. Rev. Psychol. 38, 129–151.CrossRefGoogle Scholar
  27. Lippe W. R. and Rubel E. W. (1985) ‘Ontogeny of the tonotopic organization of brainstem auditory nuclei in the chicken: Implications for development of the place principle’, J. Comp. Neurol. 237, 273–289.PubMedCrossRefGoogle Scholar
  28. Melzer P. (1984) ‘The central auditory pathway of the gerbil Psammomys obesus: A deoxyglucose study’, Hearing Res. 15, 187–195.CrossRefGoogle Scholar
  29. Metherate R. and Ashe J. H. (1991) ‘Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors’, Brain Res. 559, 163–167.PubMedCrossRefGoogle Scholar
  30. Müller C. M. and Leppelsack H.-J. (1985) ‘Feature extraction and tonotopic organization in the avian auditory forebrain’, Exp. Brain Res. 59, 587–599.PubMedCrossRefGoogle Scholar
  31. Müller M. (1991a) ‘Frequency representation in the rat cochlea‘, Hearing Res. 51, 247–254.CrossRefGoogle Scholar
  32. Müller M. (1991b) ‘Developmental changes of frequency representation in the rat cochlea’, Hearing Res. 56, 1–7.CrossRefGoogle Scholar
  33. Nudo R. L. and Masterton R. B. (1984) ‘2-Deoxyglucose studies of stimulus coding in the brainstem auditory system of the cat’, in W. D. Neff (ed.) Contributions to Sensory Physiology, Vol. 8, Academic Press, London, Florida, pp. 79–97.Google Scholar
  34. Nudo R. L. and Masterton R. B. (1986) ‘Stimulation induced (14C)2 Deoxyglucose labelling of synaptic activity in the central auditory system‘, J. Comp. Neurol. 245, 553–565.PubMedCrossRefGoogle Scholar
  35. Oliver D. L., Merzenich M. M., Roth G. L. Hall W. C. and Kaas J. H. (1976) ‘Tonotopic organization and connections of primary auditory cortex in the tree shrew, Tupaia glis’, Anat. Rec. 184, 491.Google Scholar
  36. Oliver D. L. and Hall W. C. (1978) ‘The medial geniculate body of the Tree shrew, Tupaia glis. II. Connections with the neocortex’, J. Comp. Neurol. 182, 459–494.PubMedCrossRefGoogle Scholar
  37. Pickles J. O. (1988) An Introduction to the Physiology of Hearing, Academic Press, London.Google Scholar
  38. Reale R. A. and Imig T. J. (1980) ‘Tonotopic maps of auditory cortex in the cat’, J. Comp. Neurol. 192, 265–292.PubMedCrossRefGoogle Scholar
  39. Riquimaroux H., Gaioni S. J. and Suga N. (1991) ‘Cortical computational maps control auditory perception’, Science 251, 565–568.PubMedCrossRefGoogle Scholar
  40. Romand R. (1983) ‘Development of the cochlea’, in R. Romand (ed.) Development of Auditory and Vestibular Systems, Academic Press, New York, pp. 47–88.Google Scholar
  41. Romand R. (1987) ‘Tonotopic evolution during development’, Hearing Res. 28, 117–123.CrossRefGoogle Scholar
  42. Romand R. and Ehret G. (1990) ‘Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice’, Dev. Brain Res. 54, 221–234.CrossRefGoogle Scholar
  43. Romeis B. (1968) Mikroskopische Technik, R. Oldenbourg (ed.), R. Oldenbourg Verlag, München, Wien.Google Scholar
  44. Rose J. E. (1949) ‘The cellular structure of the auditory region of the cat’, J. Comp. Neurol. 91, 409–440.PubMedCrossRefGoogle Scholar
  45. Rubel E. W. (1978) ‘Ontogeny of structure and function in the vertebrate auditory system’, in M. Jacobson (ed.), Handbook of Sensory Physiology IX, Development of Sensory Systems, Springer-Verlag, New York.Google Scholar
  46. Rubel E. W., Lippe W. R. and Ryals M. (1984) ‘Development of the place principle’, Ann. Otol. Rhinol. Laryngol. 93, 609–615.PubMedGoogle Scholar
  47. Rübsamen R. and Schafer M. (1989) ‘Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi’, J. Comp. Physiol. A 167, 757–769.Google Scholar
  48. Ryan A. F., Woolf N. K. and Sharp F. R. (1982) ‘Tonotopic organization in the central auditory pathway of the Mongolian gerbil: A 2-Deoxyglucose study’, J. Comp. Neurol. 207, 369–380.PubMedCrossRefGoogle Scholar
  49. Ryan A. F. and Woolf N.K. (1988) ‘Development of tonotopic representation in the mongolian gerbil: a 2-deoxyglucose study’, Dev. Brain Res. 41, 61–70.CrossRefGoogle Scholar
  50. Ryan A. F., Braverman S., Woolf N. K. and Axelsson G. A. (1989) ‘Auditory neural activity evoked by pure-tone stimulation as a function of intensity’, Brain Res. 483, 283–293.PubMedCrossRefGoogle Scholar
  51. Sally S. L. and Kelly J. B. (1988) ‘Organization of auditory cortex in the albino rat: sound frequency’, J. Neurophysiol. 59, 1627–1638.PubMedGoogle Scholar
  52. Schafer M., Rübsamen R., Dörrscheidt G. J. and Knipschild M. (1992) ‘Setting complex tasks to single units in the avian forebrain. II: Do we really need natural stimuli to describe neuronal response characteristics?’, Hearing Res. 57, 231–244.CrossRefGoogle Scholar
  53. Scheich H. and Bonke B. A. (1981) ‘Tone versus FM induced patterns of excitation and suppression in 14-C-2-Deoxyglucose labelled auditory cortex of the guinea fowl’, Exp. Brain Res. 44, 445–449.PubMedCrossRefGoogle Scholar
  54. Scheich H. (1983) ‘Two columnar systems in the auditory neostriatum of the chick: Evidence from 2-Deoxyglucose’, Exp. Brain Res. 51, 199–205.PubMedCrossRefGoogle Scholar
  55. Scheich H. (1985) ‘Auditory brain organization of birds and its constraints for the design of vocal repertoires’, Hölldobler and Lindauer (eds.), Fortschritte der Zoologie, Bd. 31, Experimental Behavioral Ecology, G. Fischer Verlag, Stuttgart, New York, pp. 195–209.Google Scholar
  56. Scheich H. (1991) ‘Auditory cortex: comparative aspects of maps and plasticity’, Current Opinion in Neurobiol. 1, 236–247.CrossRefGoogle Scholar
  57. SchObel G. (1989) ‘Verhaltensphysiologische Untersuchungen zur Erfassung des Hörvermögens bei Spitzhörnchen Tupaia belangeri während der Ontogenese’, Thesis, University of Stuttart-Hohenheim.Google Scholar
  58. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) ‘The (14C)-Deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anaesthetized albino rat’, J. Neurochem. 28, 897–916.PubMedCrossRefGoogle Scholar
  59. Sousa-Pinto A. (1973) ‘The structure of the first auditory cortex in the cat. I. Light microscopic observations on its organization’, Arch. Ital. Biol. 111, 112–137.PubMedGoogle Scholar
  60. Spatz W. B. (1966) ‘Zur Ontogenese der Bulla tympanica von Tupaia glis Diard 1820 (Prosimiae, Tupaiiformes)’, Folia Primatol. 4, 26–50.PubMedCrossRefGoogle Scholar
  61. Starck D. (1978) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage I, Springer-Verlag, Berlin, Heidelberg, New York, p. 189.Google Scholar
  62. Steffen H., Simonis C., Thomas H., Tillein J., and Scheich H. (1988) ‘Auditory cortex: multiple fields, their architectonics and connections in the mongolian gerbil’, in J. Syka and R. B. Masterton (eds.), Auditory Pathway, Plenum Press, New York, pp. 223–228.Google Scholar
  63. Steinschneider M., Arezzo J. C. and Vaugham H. G. (1990) ‘Tonotopic features of speechevoked activity in primate auditory cortex’, Brain Res. 519, 158–168.PubMedCrossRefGoogle Scholar
  64. Suga N. (1982) ‘Functional organization of the auditory cortex: representation beyond tonotopy in the bat’, in C. N. Woolsey (ed.) Cortical Sensory Organization, Vol. 3, Multiple Auditory Areas, Humana, Clifton, pp. 157–218.Google Scholar
  65. Tigges J. and Shantha T. R. (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis), The Williams & Wilkins Company, Baltimore.Google Scholar
  66. Uno H., Ohno Y., Yamada T. and Miyamoto K. (1991) ‘Neural coding of speech sound in the telencephalic auditory area of the mynah bird’, J. Comp. Physiol. A 169, 231–239.CrossRefGoogle Scholar
  67. Villa A. E. P. (1990) ‘Physiological differentiation within the auditory part of the thalamic reticular nucleus of the cat’, Brain Res. Rev. 15, 25–40.PubMedCrossRefGoogle Scholar
  68. Webster W. R., Serviere J., Martin R. and Brown M. (1985) ‘Uncrossed and crossed inhibition in the inferior colliculus of the cat: A combined 2-deoxyglucose and electrophysiological study’, J. Neurosci. 5, 1820–1832.PubMedGoogle Scholar
  69. Webster W. R. and Martin R.L. (1991) ‘The development of frequency representation in the inferior colliculus of the kitten’, Hearing Res. 55, 70–80.CrossRefGoogle Scholar
  70. Woody C. D., Gruen E., Melamed O. and Chizhevsky V. (1991) ‘Patterns of unit activity in the rostral thalamus of cats related to short-latency discrimination between different auditory stimuli’, J. Neurosci. 11(1), 48–58.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • H. Binz
    • 1
  • E. Zimmermann
    • 2
  • H. Rahmann
    • 1
  1. 1.Institute of ZoologyUniversity of Stuttgart-HohenheimStuttgart 70Germany
  2. 2.Deutsches Primatenzentrum GmbHGöttingenGermany

Personalised recommendations