Wavelets, Splines and Divergence-Free Vector Functions
Chapter
- 4 Citations
- 320 Downloads
Abstract
The aim of this lecture is to give a quick review on wavelets and spline theory, a very quick one since Professor Chui already gave you an extended lecture on spline wavelets [7]. To avoid too much redundancy with Chui’s talk, I will speak as few as possible about “classical wavelet theory” - namely the orthonormal wavelet bases provided by the multiresolution analysis scheme - and a little more about heretical wavelet theories, such as bi-orthogonal wavelets or the pre-wavelets of G. Battle. A very nice example of how to apply such heretical wavelets will be given in the study of divergence-free vector wavelets.
Keywords
Multiresolution Analysis Riesz Basis Unconditional Basis Wavelet Theory Spline Wavelet
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]A. Aldroubi, M. Eden & M. Unser A family of polynomial spline wavelet transform. Preprint, 1990.Google Scholar
- [2]P. Auscher Ondelettes fractales et applications. Thèse, Paris IX, 1989.Google Scholar
- [3]G. Battle A block spin construction of ondelettes. Part I: Lemarié functions. Comm. Math. Phys. 110 (1987), 601–615.MathSciNetCrossRefGoogle Scholar
- [4]G. Battle A block spin construction of ondelettes. Part II: The QFT connection. Comm. Math. Phys. 114 (1988), 93–102.MathSciNetCrossRefGoogle Scholar
- [5]G. Battle & P. Federbush A note on divergence-free vector wavelets. Preprint, T.A.M.U., 1991.Google Scholar
- [6]G. Battle & P. Federbush Divergence-free vector wavelets. Preprint, T.A.M. U., 1991.Google Scholar
- [7]C. K. Chui An introduction to spline wavelets. Lecture at the NATO-ASI on “Approximation theory, splines and applications”, Maratea, 1991.Google Scholar
- [8]C. K. Chui & J. Z. Wang On compactly supported spline wavelets and a duality principle. To appear in Trans. Amer. Math. Soc. Google Scholar
- [9]C. K. Chui & J. Z. Wang A cardinal spline approach to wavelets. To appear in Proc. Amer. Math. Soc. Google Scholar
- [10]A. Cohen, I. Daubechies & J. C. Feauveau Bi-orthogonal bases of compactly supported wavelets. Preprint, ATT & Bell Laboratories, 1990.Google Scholar
- [11]I. Daubechies Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 46 (1988), 909–996.MathSciNetCrossRefGoogle Scholar
- [12]I. Daubechies & J. Lagarias Two-scale difference equations. Preprint, ATT & Bell Laboratories, 1989.Google Scholar
- [13]J. C. Feauveau Analyse multi-resolution par ondelettes non orthogonales et banc de filtres numériques. Thèse, Paris XI, 1990.Google Scholar
- [14]S. Jaffard Construction et propriétés des bases d’ondelettes. Thèse, Ecole Polytechnique, 1989.Google Scholar
- [15]P. G. Lemarie Construction d’ondelettes splines. Unpublished, 1987.Google Scholar
- [16]P. G. Lemarie Ondelettes à localisation exponentielle. J. Math. Pures & Appl. 67 (1988), 227–236.MathSciNetzbMATHGoogle Scholar
- [17]P. G. Lemarie Théorie L 2 des surfaces splines. Unpublished 1987.Google Scholar
- [18]P. G. Lemarie Bases d’ondelettes sur les groupes de Lie stratifiés. Bull. Soc. Math. France 117 (1989), 211–232.MathSciNetzbMATHGoogle Scholar
- [19]P. G. Lemarie Some remarks on wavelets and interpolation theory. Preprint, Paris XI, 1990.Google Scholar
- [20]P. G. Lemarie Fonctions à support compact dans les analyses multi-résolutions. To appear in Revista Matematica Ibero-americana.Google Scholar
- [21]P. G. Lemarie-Rieusset Analyses multi-résolutions non orthogonales et ondelettes vecteurs à divergence nulle. Preprint, Paris XI, 1991.Google Scholar
- [22]P. G. Lemarie & Y. Meyer Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2 (1986), 1–18.MathSciNetCrossRefGoogle Scholar
- [23]S. Mallat A theory for multi-resolution signal decomposition: the wavelet representation. IEEE PAMI 11 (1989), 674–693.zbMATHCrossRefGoogle Scholar
- [24]Y. Meyer Ondelettes et opérateurs, tome 1. Paris, Hermann, 1990.Google Scholar
- [25]I. J. Schoenberg Cardinal spline interpolation, CBMS-NSF. Series in Applied Math. ≠ 12, SIAM Publ., Philadelphia, 1973.Google Scholar
- [26]J. O. Stromberg A modified Franklin system and higher-order systems of ℝn as unconditional bases for Hardy spaces, in Conf. on Harmonic Anal. in honor of A. Zygmund, vol. 2, Waldsworth, 1983, 475–494.MathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1992