Advertisement

Organic Carbon Flux Through the Benthic Community in the Temperate Abyssal Northeast Atlantic

  • O. Pfannkuche
Part of the NATO ASI Series book series (ASIC, volume 360)

Abstract

In order to assess the carbon flux through the deep-sea benthic boundary layer, sediment community oxygen consumption (SCOC) was measured in different months and years at the BIOTRANS area in the abyssal northeastern Atlantic. SCOC varied seasonally with a maximum in July/August. Evidence is given for a direct coupling between a substantial sedimentation of phytodetritus and the seasonal increase in SCOC. Rapid colonization, growth and decomposition rates indicate that the deep-sea benthic microbial and protozoan biota can react quickly to substantial falls of particulate organic matter. They seem to be the most important groups to generate seasonal changes in deep-sea benthic carbon flux rates.

Keywords

Particulate Organic Carbon Benthic Community Carbon Flux Benthic Boundary Layer Organic Carbon Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A.L. and Silver, M. W. (1988) Characteristics, dynamics and significance of marine snow Prog. Oceanogr. 20, 41–82.CrossRefGoogle Scholar
  2. Barnett, P.R.O., Watson, J. and Conelly, D. (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments, Oceanol. Acta 7, 399–408.Google Scholar
  3. Beckmann, W., Auras, A. and Hemleben, C.h. (1987) Cyclonic cold-core eddy in the eastern North Atlantic. III. Zooplankton, Mar. Ecol. Prog. Ser. 39, 165–173.CrossRefGoogle Scholar
  4. Billett, D.M.S., Lampitt, R.S., Rice, A.L. and Mantoura, R.F.C. (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos, Nature (Lond.) 302, 520–522.CrossRefGoogle Scholar
  5. Bruland, K,W., Bienfang, P.K., Bishop, J.K.B., Eglington, G., Ittekkot, V.A.W., Lampitt, R., Sarntheim, M., Thiede, J., Walsh, J.J. and Wefer, G. (1989) Group report. Flux to the sea floor in W.H. Berger, V.S. Smetacek & G. Wefer (eds.), Productivity of the Ocean Present and Past, Wiley & Sons, Chichester, New York, pp. 193–215.Google Scholar
  6. Bruun, A.F. (1957) Deep sea and abyssal depth, Mem. geol. Soc. Am. 67, 641–672.Google Scholar
  7. Deuser, W.G. and Ross, E.H (1980) Seasonal change in the flux of organic carbon to the deep Sargasso Sea Nature (Lond.) 283, 364–365.Google Scholar
  8. Faubel, A., Hartwig, E. and H. Thiel (1983) On the ecology of the benthos of sublittoral sediments, Fladen Ground, North Sea I. Meiofauna standing stock and estimation of production, Meteor Forsch.-Ergebnisse, Reihe D 36, 35–48.Google Scholar
  9. Gooday, A.J. (1988) A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea, Nature (Lond.) 332, 70–73.CrossRefGoogle Scholar
  10. Gooday, A.J. and Turley, C.M. (1990) Response by benthic organisms to input of organic material to the ocean floor, Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 331, 119–138.CrossRefGoogle Scholar
  11. Gooday, A.J. and Lambshead, P.J.D. (1989) Influence of seasonally deposited phytodetritus on the benthic foraminiferal population in the bathyal northeast Atlantic: the species response, Mar. Ecol. Prog. Ser. 58, 53–67.CrossRefGoogle Scholar
  12. Graf, G. (1989) Benthic-pelagic coupling in a deep-sea benthic community, Nature (Lond.) 341, 437–439.CrossRefGoogle Scholar
  13. Heinrich, H. (1986) Bathymetrie und Geomorphologie des NOAMP-Gebietes, Westeuropliisches Becken (l7°W bis 22°W, 46°N bis 49°N), Dt. hydrogr. Z. 39, 183–196.CrossRefGoogle Scholar
  14. Hessler, R.R. and Sanders, H.L. (1967) Faunal diversity in the deep-sea, Deep-Sea Res. 14, 65–78.Google Scholar
  15. Honjo, S., Manghanini, S.J. and Cole, J.J. (1982) Sedimentation of biogenic matter in the deep ocean, Deep-Sea Res. 29, 609–625.CrossRefGoogle Scholar
  16. Jannasch, H.W. and Wirsen, C.O. (1973) Deep-sea micro-organisms. In situ response to nutrient enrichment, Science 180, 641–643.CrossRefGoogle Scholar
  17. Klein, H. (1987) Benthic storms, vortices, and particle dispersion in the deep West European Basin, Dt. hydrogr. Z. 40, 87–102.CrossRefGoogle Scholar
  18. Koblentz-Mishke, O.I., Volkovinsky, V.V., and Kabanova, J.G. (1970) Plankton primary production of the world ocean, in W. Wooster (ed.) Scientific Exploration of the South Pacific, Nat. Acad. Sci., Washington, D.C., pp. 183–193.Google Scholar
  19. Kupferman, S.L., Becker, G.A., Simmons, W.F., Schauer, U., Marietta, M.O. and Nies, H. (1986) An intense cold core eddy in the North-East Atlantic, Nature (Lond.) 319, 474–477.CrossRefGoogle Scholar
  20. Lampitt, R.S. (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res. 32, 885–897.CrossRefGoogle Scholar
  21. Lampitt, R.S., Billett, D.S.M. and Rice, A.L. (1986) Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean, Mar. Biol. 93, 69–81.CrossRefGoogle Scholar
  22. Linke, P. (1989) Lebendbeobachtungen und Untersuchungen des Energiestoffwechsels benthischer Foraminiferen aus dem Europ a ischen Nordmeer Ber. Sonderforschungsbereich 313, Univ. Kiel 18, 1–123.Google Scholar
  23. Lochte, K. (this volume) Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic, in G.T. Rowe and V. Pariente (eds.) Deep-Sea Food Chains and the Global Carbon Cycle. Proc. NATO ARW, College Station, Texas.Google Scholar
  24. Lochte, K. and Pfannkuche, O. (1987) Cyclonic cold-core eddy in the eastern North Atlantic. II. Nutrients, bacterio-and phytoplankton, Mar. Ecol. Prog. Ser. 39, 153–164.CrossRefGoogle Scholar
  25. Lochte, K. and Rheinheimer, G. (1990) Bakterien im Sediment und bodennahen Wasser in O. Pfannkuche, W. Beckmann, B. Christiansen, K. Lochte, G. Rheinheimer, H. Thiel and H. Weikert (eds.), BIOTRANS. Biologischer Vertikaltransport und Energiehaushalt in der bodennahen Wasserschicht der Tiefsee, Ber. Zentrum Meeres-u. Klimaforsch. Univ. Hamburg 10, pp. 55–77.Google Scholar
  26. Lochte, K. and Turley, C.M. (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep-sea, Nature (Lond.) 333, 67–69.CrossRefGoogle Scholar
  27. McCave, L.N. (1975) Vertical flux of particles in the ocean, Deep-Sea Res. 22, 491–502.Google Scholar
  28. Mittelstaedt, E. (1987) Cyclonic cold core eddy in the eastern North Atlantic. I. Physical description, Mar. Ecol. Prog. Ser. 39, 145–152.CrossRefGoogle Scholar
  29. Milller, P.J. and Suess, E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans. L Organic carbon preservation, Deep-Sea Res. 26, 1347–1362.Google Scholar
  30. Pamatmat, M.M. (1977) Benthic community metabolism: a review and assessment of present status and outlook, in B.C. Coull (ed.), Ecology of Marine Benthos, Univ. of South Carolina Press, Columbia, S.C., pp. 89–111.Google Scholar
  31. Patching, J.W., Raine, R.T.C., Barnett, P.R.O. and Watson, J. (1986) Abyssal benthic oxygen consumption in the northeastern Atlantic: measurements using the suspended core technique, Oceanol. Acta 9, 1–7.Google Scholar
  32. Pfannkuche, O. (1985) The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks, Oceanol. Acta 8, 343–353.Google Scholar
  33. Pfannkuche, O. (1990) Makro-, Meiobenthos, Sedimentchemiein O. Pfannkuche, W. Beckmann, B. Christiansen, K. Lochte, G. Rheinheimer, H. Thiel and H. Weikert (eds.), BIOTRANS. Biologischer Vertikaltransport und EnergiehaushaJt in der bodennahen Wasserschicht der Tiefsee, Ber. Zentrum Meercs-u. Klimaforsch. Univ. Hamburg 10, pp. 16–51.Google Scholar
  34. Pfannkuche, O. and Lochte, K. (1990) Metabolismus und Energieflu B im Benthal in O. Pfannkuche, W. Beckmann, B. Christiansen, K. Lochte, G. Rheinheimer, H. Thiel and H. Weikert (eds.), BIOTRANS. Biologischer Vertikaltransport und Energiehaushalt in der bodennahen Wasserschicht der Tiefsee, Ber. Zcntrum Meeres-u. Klimaforsch. Univ. Hamburg 10, pp. 130–154.Google Scholar
  35. Pfannkuche, O., Lochte, K. and Thiel, H. (1988) Sedimentation of spring phytodetritus to the deep-sea floor, EOS 69, 1117.Google Scholar
  36. Pfannkuche, O. and Thiel, H. (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard Shelf and in the Nansen Basin, Polar Biol. 7: 253–266.CrossRefGoogle Scholar
  37. Rice, A.L., Billett, D.S.M., Fry, J., John, A.W.G., Lampitt, R.S., Mantoura, R.C.F. and Morris, R.J. (1986) Seasonal deposition of phytodetritus to the deep-sea floor, Proc. R Soc. Edinb. Sect. B (Biol. Sci.) 88, 265–279.Google Scholar
  38. Riley, G.A., Wangersky, P.J. and van Hemert, D. (1964) Organic aggregates in tropical and subtropical waters of the North Atlantic Ocean, Limnol. Oceanogr. 9, 546–550.CrossRefGoogle Scholar
  39. Rowe, G.T., Merrett, N., Shepherd, J., Needler, G., Hargrave, B. and Marietta, M. (1986) Estimates of direct biological transport of radioactive waste in the deep sea with special reference to organic carbon budgets, Oceanol. Acta 9, 199–208.Google Scholar
  40. Rutgers van der Loeff, M.M. and Lavalcye, M.S.S. (1986) Sediments, fauna and the dispersal of radionucleids at the N.E. Atlantic dump site for low-level radioactive waste, Nederlands Inst. Onderzoek Zee, Texel, Final Report Dutch DORA Program, pp. 134.Google Scholar
  41. Smith, K.L., Jr. (1978) Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 m, Mar. Biol. (Berl.) 47, 337–347.CrossRefGoogle Scholar
  42. Smith, K.L., Jr. (1987) Food energy supply and demand: a discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep ocean, Limnol. Oceanogr. 32, 201–220.CrossRefGoogle Scholar
  43. Smith, K.L., Jr. and Baldwin, R.J. (1984) Seasonal fluctuations in the deep-sea sediment community oxygen consumption: central and eastern North Pacific, Nature (Lond.) 307, 624–626.CrossRefGoogle Scholar
  44. Smith, K.L., Jr. and Hinga, K.R (1983) Sediment community respiration in the deep sea, in G.T. Rowe (ed.), The Sea, Vol. 8, John Wiley & Sons, New York, pp.331–370.Google Scholar
  45. Suess, E. (1988) Effects of microbe activity, Nature (Lond.) 333, 17–18.CrossRefGoogle Scholar
  46. Thiel, H. (1983) Meiobenthos and Nanobcnthos of the deep-sea, in G.T. Rowe (ed.), The Sea, Vol. 8, John Wiley & Sons, New York, pp. 167–230.Google Scholar
  47. Thiel H., Pfannkuche, O., Schriever, G., Lochte, K., Hemleben, C.h., Mantoura, R.F.G., Turley, C.M., Patching, J.W. and Riemann, F. (1988/89) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic, Biol. Oceanogr. 6, 203–239.Google Scholar
  48. Turley, C.M. and Lochte, K. (1990) Microbial response to the input of fresh detritus to the deepsea bed, in L.O. Labeyrie and C. Jeandel (eds.), Geochemical Variability in the Oceans, Ice and Sediments, Palaeogeogr., Palaeoclimatol., Palaeoecol. (Global Planet. Change Sect.) 89, 2–23.Google Scholar
  49. Turley, C.M., Lochte, K. and Patterson, O.J. (1988) A barophilic flagellate isolated from 4500 in the mid-North Atlantic, Deep-Sea Res. 35, 1079–1092.CrossRefGoogle Scholar
  50. Tyler, P.A. (1986) Studies of a benthic time series: reproductive biology of benthic invertebrates in the Rockall Trough. Proc. R. Soc. Edinb. Sect. BC (Biol. Sci.) 88, 175–190.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • O. Pfannkuche
    • 1
  1. 1.Institut für MeereskundeAbt. Marine Mikrobiologie an der Universität KielKiel 1Germany

Personalised recommendations