Probiotics pp 209-224 | Cite as

Selection of strains for probiotic use

  • Robert Havenaar
  • Bart Ten Brink
  • Jos H. J. Huis In ’t Veld


A probiotic can be defined as ‘a viable mono- or mixed culture of microorganisms which, applied to animal or man, beneficially affects the host by improving the properties of the indigenous microflora’ (Havenaar and Huis in ’t Veld, 1992). This implies that the term ‘probiotic’ is restricted to products which (a) contain live microorganisms, e.g. as freeze-dried cells or in a fermented product; (b) improve the health status of man or animals and exert their effects in the mouth or gastrointestinal tract (e.g. included in food or administered as capsules), in the upper respiratory tract (aerosol) or in the urogenital tract (by local application).


Lactic Acid Bacterium Lactobacillus Plantarum Probiotic Strain Microbial Strain Lactobacillus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, R. (1986) Inhibition of Staphylococcus aureus and spheroplasts of gram-negative bacteria by an antagonistic strain of Lactobacillus plantarum. Int. J. Food Microbiol., 3, 149–60.CrossRefGoogle Scholar
  2. Andersson, R.E., Daeschel, M.A. and Hassan, H.M. (1988) Antibacterial activity of plantaricin SIK-83, a bacteriocin produced by Lactobacillus plantarum. Biochimie, 70, 381–90.CrossRefGoogle Scholar
  3. Axelsson, L.T., Chung, T.C. Dobrogosz W.J. and Lindgren S.E. (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis., 2, 131–6.CrossRefGoogle Scholar
  4. Barefoot, S.F. and Klaenhammer T.R. (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol., 45, 1808–15.Google Scholar
  5. Barefoot, S.F. and Klaenhammer T.R. (1984) Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob. Agents Chemother., 26, 328–CrossRefGoogle Scholar
  6. Barrow, P.A., Brooker, B.E. Fuller R. and Newport M.J. (1980) The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J.Appl.Bacteriol., 48, 147–54.CrossRefGoogle Scholar
  7. Bozoglu, T.F. and Gurakan, G.C. (1989) Freeze-drying injury of Lactobacillus acidophilus. J.Food Protect., 52, 259–60.Google Scholar
  8. Chung, T.C., Axelsson, L. Lindgren, S.E. and Dobrogosz, W.J. (1989) In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol. Health Dis., 2, 137–44.CrossRefGoogle Scholar
  9. Conway, P.L., Gorbach, S.L. and Goldin, B.R (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J.Diary Sci., 70, 1–12.Google Scholar
  10. Conway, P.L. and Kjelleberg, S. (1989) Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach epithelium. J.Gen.Microbiol., 135, 1175–86.Google Scholar
  11. Daeschel, M.A., Kennedy, M.C. and McDonald, L.C. (1990) Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol., 7, 91–8.CrossRefGoogle Scholar
  12. Dziezak, J.D. (1988) Microencapsulation and encapsulated ingredients. Food Technol., April, 136–57.Google Scholar
  13. Ellen, R.P. and Gibbons R.J. (1974) Parameters affecting the adherence and tissue tropisms of Streptococcus pyogenes. Infect. Immun., 9 85.Google Scholar
  14. Fuller, R. (1973) Ecological studies on the lactobacillus flora associated with the crop epithelium of the fowl. J. Appl. Bacteriol., 36, 131–9.CrossRefGoogle Scholar
  15. Fuller R. and Turvey, A. (1971) Bacteria associated with the intestinal wall of the fowl (Gallus domesticus). J. Appl. Bacteriol., 34, 617–22.CrossRefGoogle Scholar
  16. Fuller, R., Barrow, P.A. and Brooker, B.E. (1978) Bacteria associated with the gastric epithelium of neonatal pigs. Appl. Environ. Microbiol., 35, 582–91.Google Scholar
  17. Gilliland, S.E. (1979) Beneficial interrelationships between certain microorganisms and humans: candidate microorganisms for use as dietary adjuncts. J. Food Protect., 42, 164.Google Scholar
  18. Gilliland, S.E. (1981) Enumeration and identification of lactobacilli in feed supplements marketed as sources of Lactobacillus acidophilus. Oklahoma Agric Exp. Sta. Misc. Publ.., 108, 161Google Scholar
  19. Gilliland, S.E. and Speck M.L. (1977) Enumeration and identification of lactobacilli in dietary products. J. Food Protect., 40, 760.Google Scholar
  20. Gilliland, S.E., Staey, T.E. and Bush, L.J. (1984) Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J. Diary Sci., 67, 3045.CrossRefGoogle Scholar
  21. Gilliland, S.E., Nelson, C.R and Maxwell, C. (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol., 49, 377–81.Google Scholar
  22. Hale, O.M. and Newton G.L. (1979) Effects of a nonviable Lactobacillus species fermentation product on performance of pigs. J.Anim.Sci., 48, 770–5.Google Scholar
  23. Hamdan, I.Y. and Mikolajcik E.M. (1974) Acidolin: an antibiotic produced by Lactobacillus acidophilus. J. Antibiot 27, 631–6.CrossRefGoogle Scholar
  24. Havenaar, R. and Huis in’t Veld, J.H.J. (1992) Probiotics: a general view, in Lactic Acid Bacteria in Health and Disease, vol. 1 (ed. J.B.J. Wood), Elsevier Applied Science Publishers (in press).Google Scholar
  25. Hood, S.K. and Zottola E.A. (1988) Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J.Food Sci., 53, 1514–16.CrossRefGoogle Scholar
  26. Joerger, M.C. and Klaenhammer T.R (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol., 167; 439–46.Google Scholar
  27. Johnson, M.C., Ray B. and Bhowmik T. (1987) Selection of Lactobacillus acidophilus strains for use in ‘acidophilus products’. Ant. Leeuwenhoek 53; 215–31.CrossRefGoogle Scholar
  28. Klaenhammer, T.R. and Kleeman E.G. (1981) Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Appl.Environ.Microbiol., 41; 1461–7.Google Scholar
  29. Koninsky, J. (1982) Colicins and other bacteriocins with an established mode of action. Ann. Hev. Microbiol., 36; 125–44.CrossRefGoogle Scholar
  30. Kulig, W., Kirchgessner, M. Erhardt, W. et al. (1989) Zur Messung von Galleflussrate und Gallelipiden an gallengangskanuelierten Schweinen mittels einer vollautomatischen Rueckfuerapparatur. J.Anim. Physiol. Anim. Nutr., 62; 93–100.CrossRefGoogle Scholar
  31. McCarthy, D.M., Lin, J.H.C., Rincker, L.A. and Savage, D.C. (1988) Genetic transformation in Lactobacillus sp. strain 100-33 of the capacity to colonize the nonsecreting gastric epithelium in mice. Appl. Environ.Microbiol., 54; 416–22.Google Scholar
  32. Mitsuoka, T. (1969a) Vergleichende untersuchungen über die Laktobazillen aus den Faeces von Mensch, Schweines und Hühner. Zentralbl. Bacteriol. Microbiol. Hyg. [A], 210, 32–51.Google Scholar
  33. Mitsuoka, T. (1969b) Vergleichende untersuchungen über die Bifidobakterien aus dem Verdauungstrakt von Mensch und Tier. Zentralbl. Bacteriol. Microbiol. Hyg. [A] 210; 52–64.Google Scholar
  34. Mortvedt, C.I. and Nes, L.F. (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. Gen. Microbiol., 136; 1601–7.CrossRefGoogle Scholar
  35. Mäyra-Mäkinen, A., Manninen, M. and Gyllenberg H. (1983). The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J.Appl.Bacteriol., 55, 241–5.CrossRefGoogle Scholar
  36. Payne, D., Juste, C. Corring T. and Fevrier C. (1989) Effects of wheat bran on bile secretion in the pig. Nutr. Hep. Int., 40, 761–71.Google Scholar
  37. Reddy, G.V., Shahani, K.M. Friend B.A. and Chandan R.C. (1983) Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus: III. Production and partial purification of bulgarican from Lactobacillus bulgaricus. Gult. Dairy Prod. J. 18, 15–19.Google Scholar
  38. Robins-Browne, R.M., Path F.F. & Levine M.M. (1981) The fate of ingested lactobacilli in the proximal small intestine. Amer J.Clin.Nutr., 34; 514–19.Google Scholar
  39. Schillinger, U. and Lucke F.K. (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–6.Google Scholar
  40. Shahani, K.M., Vakil J.R. and Kilara A. (1976) Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus: I. Cultural conditions for the production of antibiosis. Gult. Dairy Prod. J., 11, 14–17.Google Scholar
  41. Shahani, K.M., Vakil J.R. and Kilara A. (1977) Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus: II. Isolation of acidophilin from L. acidophilus. Gult. Dairy Prod. J., 12, 8–11.Google Scholar
  42. Staab, J.A. and Ely J.K. (1987) Viability of lyophilized anaerobes in two media. Microbiology, 24, 174–8.Google Scholar
  43. Suegara, N., Morotomi, M. Watanabe, T. et al. (1975) Behavior of microflora in the rat stomaeh: adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach in vitro. Infect. Immun., 12, 173–9.Google Scholar
  44. Tagg, J.R., Dajani A.S. and Wannaker L.W. (1976) Bacteriocins of gram-positive species. Bacteriol. Rev., 40, 722–56.Google Scholar
  45. Talarico, T.R., Casas, I.A., Chung T.C. and Dobrogosz W.J. (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 32, 1854–8.CrossRefGoogle Scholar
  46. Talarico, T.L. and Dobrogosz W.J. (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 33, 674–9.CrossRefGoogle Scholar
  47. Tannock, G.W., Szylit, O. and Raibaud P. (1982). Colonization oftissue surfaces in the gastrointestinal tract of gnotobiotic animals by Lactobacillus strains. Can. J. Microbiol., 28, 1196–8.CrossRefGoogle Scholar
  48. Upreti, G.C. and Hinsdill R.D. (1973) Isolation and characterization of a bacteriocin from a homofermentative lactobacillus. Antimicrob. Agents Chemother., 4, 487–94.Google Scholar
  49. West, C.A. and Warner, P.J. (1988) Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193. FEMS Microbiol. Lett., 49, 163–5.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Robert Havenaar
  • Bart Ten Brink
  • Jos H. J. Huis In ’t Veld

There are no affiliations available

Personalised recommendations