Advertisement

Anaphylatoxins

  • J. Köhl
  • D. Bitter-Suermann
Chapter
Part of the Immunology and Medicine book series (IMME, volume 20)

Abstract

In addition to the basic functions, opsonization and cytolysis, associated with the complement system there are some physiological activities elicited by complement peptides which contribute significantly to antimicrobial defence in infectious diseases and to the physiological and pathological consequences of immune complex formation, in short to the benefit and burden of inflammation. These effects depend on the cleavage of low-molecular-weight activation peptides from C4, C3 and C5: the anaphylatoxic peptides or anaphylatoxins C4a, C3a and C5a. The known primary structures1 are given in Table 11.1. Generated from the N-termini of the a-chains of C4, C3 or C5 via activation of the classical or alternative pathways of complement, they interact with specific receptors on a number of cell types of the phagocytic system, mainly granulocytes and monocytes/macrophages. In addition, endothelial cells, possibly some T-cell subsets and, in some species, platelets express anaphylatoxin-receptors. Although the C5a receptor is often expressed with the C3a/C4a receptor, they are distinct species. The ligand-receptor interaction triggers G-protein coupled signal transduction pathways and results in a number of cellular responses2-15, the most significant of which are documented in Table 11.2. Some of these biological effects are in general use as highly sensitive and specific in vitro detection systems for anaphylatoxins, e.g. smooth muscle contraction, enzyme release, stimulation of the respiratory burst, histamine release, ATP release,

Keywords

SystemiC Lupus Erythematosus Complement Activation Adult Respiratory Distress Syndrome Septic Primate Terminal Complement Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bitter-Suermann, D. (1987). The anaphylatoxins. In Rother, K. and Till, G. (eds.) The Complement System, pp. 367–395. (Heidelberg: Springer Verlag)Google Scholar
  2. 2.
    Johnson, A. R., Hugh, T. E. and Miiller-Eberhard, H. J. (1975). Release of histamine from mast cells by the complement peptides C3a and C5a. Immunology, 28, 1067–1087PubMedGoogle Scholar
  3. 3.
    Grossklaus, C, Damerau, B., Lemgo, E. and Vogt, W. (1976). Induction of platelet aggregation by the complement-derived peptides C3a and C5a. Naunyn-Schmiedeberg’s Arch. Pharmacol., 295, 71–76CrossRefGoogle Scholar
  4. 4.
    Meuer, S., Ecker, U., Hadding, U. and Bitter-Suermann, D.(1981). Platelet serotonin-release by C3a and C5a. Two independent pathways of activation. J. Immunol., 126, 1506–1509PubMedGoogle Scholar
  5. 5.
    Zanker, B., Rasokat, H., Hadding, U. and Bitter-Suermann, D. (1982). C3a induced activation and stimulus specific desensitization of guinea pig platelets. Agents Actions (Suppl), 11, 147–157Google Scholar
  6. 6.
    Hartung, H. P., Bitter-Suermann, D. and Hadding, U. (1983). Induction of thromboxane release from macrophages by anaphylatoxic peptide C3a of complement and synthetic hexapeptide C3a. J. Immunol., 130, 72–77Google Scholar
  7. 7.
    Dias da Silva, W. and Lepow, I. (1967). Complement as a mediator of inflammation. II. Biological properties of anaphylatoxin prepared with purified components of human complement. J. Exp. Med., 125, 921–946PubMedCrossRefGoogle Scholar
  8. 8.
    Björk, J., Hugh, T. E. and Smedegard, G. (1985). Microvascular effects of anaphylatoxins C3a and C5a. J. Immunol., 134, 1115–1119PubMedGoogle Scholar
  9. 9.
    Fernandez, H. N., Henson, P. M, Otani, A. and Hugli, T. E. (1978). Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro under simulated in vivo conditions. J. Immunol., 120, 102–108Google Scholar
  10. 10.
    Goldstein, I. M. and Weissmann, G. (1974). Generation of C5-derived lysosomal enzyme-releasing activity (C5a) by lysates of leucocyte lysosomes. J. Immunol., 113, 1583–1588PubMedGoogle Scholar
  11. 11.
    Goldstein, I. M., Ross, D., Kaplan, H. B. and Weissmann, G. (1975). Complement and immunoglobulins stimulate superoxide production by human leucocytes independently of phagocytosis. J. Clin. Invest., 56, 1155–1163PubMedCrossRefGoogle Scholar
  12. 12.
    Haeffner-Cavaillon, N., Cavaillon, J. M., Laude, M. and Kazatchkine, M. D. (1987). C3a (desarg) induces production and release of interleukin 1 by cultured human monocytes. J. Immunol. 139, 794–799PubMedGoogle Scholar
  13. 13.
    Goodmann, M. G., Chenoweth, D. E. and Weigle, W. O. (1982). Induction of interleukin 1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors. J. Exp. Med., 1156, 912–917CrossRefGoogle Scholar
  14. 14.
    Bischoff, S. C, De Week, A. L. and Dahinden, C. A. (1990). Interleukin 3 granulocyte/macrophage-colony-stimulating factor render human basophils responsive to low concentrations of complement component C3a. Proc. Natl. Acad. Sci. USA, 87, 6813–6817PubMedCrossRefGoogle Scholar
  15. 15.
    Kurimoto, Y., De Week, A. L. and Dahinden, A. (1989). Interleukin 3 dependent mediator release in basophils triggered by C5a. J. Exp. Med., 170, 467–479PubMedCrossRefGoogle Scholar
  16. 16.
    Klos, A., Ihrig, V., Messner, M., Grabbe, J. and Bitter-Suermann, D. (1988). Detection of native human complement components C3 and C5 and their primary activation peptides C3a and C5a (anaphylatoxic peptides) by ELISA’s with monoclonal antibodies. J. Immunol. Meth., 241, 241–252CrossRefGoogle Scholar
  17. 17.
    Burger, R., Zilow, G., Bader, A., Friedlein, A. and Naser, W. (1988). The C terminus of the anaphylatoxin C3a generated upon complement activation represents a neoantigenic determinant with diagnostic potential. J. Immunol., 141, 553–558PubMedGoogle Scholar
  18. 18.
    Hugli T. E. and Chenoweth D. E. (1980). Biologically active peptides of complement: Techniques and significance of C3a and C5a measurements. In Immunoassays: Clinical Laboratory Technique for the 1980s pp. 443–460. (New York: A.R. Liss Inc.Google Scholar
  19. 19.
    Nilsson, B., Svensson, K. E., Inganas, M., and Nilsson, U. R. (1988). A simplified assay for the detection of C3a in human plasma employing a monoclonal antibody raised against denatured C3. J. Immunol. Meth., 107, 281–287CrossRefGoogle Scholar
  20. 20.
    Takeda, J., Kinoshita, T., Takata, Y., Kozono, H., Tanaka, E., Hong, K., and Inoue, K., (1987). Rapid and simple measurement of human C5a-des-Arg level in plasma or serum using monoclonal antibodies. J. Immunol. Meth., 101, 265–270CrossRefGoogle Scholar
  21. 21.
    Oppermann, M., Schulze, M. and Gotze, O. (1991). A sensitive enzyme immunoassay for the quantitation of human C5a/C5a (desArg) anaphylatoxin using a monoclonal antibody with specificity for a neoepitope. Complement Inflamm., 8, 13–24PubMedGoogle Scholar
  22. 22.
    Meuer, S., Zanker, B., Hadding, U. and Bitter-Suermann, D. (1982). Low zone desensitization: a stimulus-specific control mechanism of cell-response. Investigations on anaphylatoxin-induced platelet-secretion. J. Exp. Med., 155, 698–710PubMedCrossRefGoogle Scholar
  23. 23.
    Craddock, P. R., Fehr, J., Dalmasso, A. P., Brigham, K. L. and Jacob, H. S. (1977). Hemodialysis leucopenia: pulmonary vascular leucostasis resulting from complement activation by dialyzer cellophane membranes. J. Clin. Invest., 59, 879–888PubMedCrossRefGoogle Scholar
  24. 24.
    Gerardy-Schahn, R., Ambrosius, D., Casaretto, M., Grotzinger, J., Saunders, D., Wollmer, A., Brandenburg, D. and Bitter-Suermann, D. (1988). Design and biological activity of a new generation of synthetic C3a analogues by combination of peptidic and non-peptidic elements. Biochem. J., 255, 209–216PubMedGoogle Scholar
  25. 25.
    Ember, J. A., Johansen, N. L. and Hugli, T. E. (1991). Designing synthetic superagonists of C3a anaphylatoxin. Biochemistry, 30, 3603–3612PubMedCrossRefGoogle Scholar
  26. 26.
    Mandecki, W., Mollison, K. W., Boiling, T. J., Powell, B. S., Carter, G. W. and Fox, J. L. (1985). Chemical synthesis of a gene encoding the human complement fragment C5a and its expression in Escherichia coli. Proc. Natl. Acad. Sci. USA, 82, 3542–3547CrossRefGoogle Scholar
  27. 27.
    Mollison, K. W., Mandecki, L.W.L., Zuiderweg, E. R. P., Fayer, L., Fey, T. A., Krause, R. A., Conway, R. G., Miller, L., Edalji, R. P., Shallcross, M. A., Lane, B., Fox, J. L., Greer, J. and Carter, G. W. (1989). Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA, 86, 292–296PubMedCrossRefGoogle Scholar
  28. 28.
    Köhl, J., Casaretto, M., Gier, M., Karwath, G., Gietz, C, Bautsch, W., Saunders, D. and Bitter-Suermann, D. (1990). Reevaluation of the C3a active site using short synthetic C3a analogues. Eur. J. Immunol., 20, 1463–1468PubMedCrossRefGoogle Scholar
  29. 29.
    Hugli, T. E. (1986). Biochemistry and biology of anaphylatoxins. Complement, 3, 111–127PubMedGoogle Scholar
  30. 30.
    Köhl, J., Kola, A., Bautsch, W. and Bitter-Suermann, D. (1991). Comparative analysis of synthetic anaphylatoxic peptides in ATP-release and ileum contraction assay. Complement Inflamm., 8, 175Google Scholar
  31. 31.
    Fukuoka, Y. and Hugli, T. E. (1988). Demonstration of a specific C3a receptor on guinea pig platelets. J. Immunol., 140, 3496–3501PubMedGoogle Scholar
  32. 32.
    Gerardy-Schahn, R., Ambrosius, D., Saunders, D., Casaretto, M., Mittler, C, Karwath, G., Gbrgen, S. and Bitter-Suermann, D. (1989). Characterization of C3a receptor-proteins on guinea pig platelets and human polymorphonuclear leukocytes. Eur. J. Immunol., 19, 1095–1102PubMedCrossRefGoogle Scholar
  33. 33.
    Grotzinger, J., Engels, M., Jacoby, E. and Wollmer, A. (1991). A model for the C5a receptor and for its interaction with the ligand. Protein Eng., 4, 767–771PubMedCrossRefGoogle Scholar
  34. 34.
    Bautsch, W., Stuhmer, T., Emde, M., Kretzschmar, T., Köhl, J. and Bitter-Suermann, D. (1991). A recombinant hybrid anaphylatoxin with dual C3a/C5a activity. Complement Inflamm., 8, 127–128Google Scholar
  35. 35.
    Jacob, H. S., Craddock, P. R., Hammerschmidt, D. E. and Moldow, C. R. (1980). Complement-induced granulocyte aggregation. N. Engl. J. Med., 302, 789–794PubMedCrossRefGoogle Scholar
  36. 36.
    Rollins, T. E. and Springer, M. S. (1985). Identification of the polymorphonuclear leukocyte C5a receptor. J. Biol. Chem., 260, 7157–7160PubMedGoogle Scholar
  37. 37.
    Kretzschmar, T., Kahl, K., Rech, K., Bautsch, W., Köhl, J. and Bitter-Suermann, D. (1991). Characterization of the C5a receptor on guinea pig platelets. Immunobiology, 183, 418–432PubMedCrossRefGoogle Scholar
  38. 38.
    Gerard, N. P. and Gerard, C. (1991). The chemotactic receptor for human C5a and anaphylatoxin. Nature, 349, 614–617PubMedCrossRefGoogle Scholar
  39. 39.
    Boulay, F., Mery, L., Tardif, M., Brouchon, L. and Vignais, P. (1991). Expression cloning of a receptor for C5a anaphylatoxin on differential HL-60 cells. Biochemistry, 30, 2993–2999PubMedCrossRefGoogle Scholar
  40. 40.
    Boulay, F., Tardiff, M., Brouchon, L. and Vignais, P. (1990). Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem. Biophys. Res. Commun., 168, 1103–1109PubMedCrossRefGoogle Scholar
  41. 41.
    Dixon, R. A., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E. and Diehl, R. E. (1986). Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature, 321, 75–79PubMedCrossRefGoogle Scholar
  42. 42.
    Gerard, N. P. and Gerard, C. (1990). Construction and expression of a novel recombinant anaphylatoxin, C5a-N19, as a probe for the human C5a receptor. Biochemistry, 29, 9274–9281PubMedCrossRefGoogle Scholar
  43. 43.
    Morgan, E. L. (1986). Modulation of the immune response by anaphylatoxins. Complement, 3, 128–136PubMedGoogle Scholar
  44. 44.
    Morgan, E. L., Thoman, M. L., Hobbs, M. V., Weigle, W. O. and Hugh, T. E. (1985). Human C3a-mediated suppression of the immune responses. II. Suppression of human in vitro polyclonal antibody responses occurs through the generation of nonspecific OKT8+ suppressor T cells. Clin. Immunol. Immunopathol., 37, 114–123PubMedCrossRefGoogle Scholar
  45. 45.
    Morgan, E. L. (1987). The role of prostaglandins in C3a-mediated suppression of human in vitro polyclonal antibody responses. Clin. Immunol. Immunopathol., 44, 1–11PubMedCrossRefGoogle Scholar
  46. 46.
    Morgan, E. L., Weigle, W. O., Erickson, B. W., Fok, K. F. and Hugh, T. E. (1983). Suppression of humoral immune responses by synthetic C3a peptides. J. Immunol., 131, 2258–2261PubMedGoogle Scholar
  47. 47.
    Morgan, E. L., Weigle, W. O. and Hugh, T. E. (1984). Anaphylatoxin-mediated regulation of human and murine immune responses. Fed. Proc, 43, 2543–2547PubMedGoogle Scholar
  48. 48.
    Morgan, E. L., Thoman, M. L., Weigle, W. O. and Hugh, T. E. (1983). Anaphylatoxin-mediated regulation of the immune response. II. C5a-mediated enhancement of human humoral and T cell-mediated immune responses. J. Immunol., 130, 1257–1261PubMedGoogle Scholar
  49. 49.
    Scholz, W., McClurg, M. R., Cardenas, G. J., Smith, M., Noonan, D. J., Hugli, T. E. and Morgan, E. L. (1990). C5a-mediated release of interleukin 6 by human monocytes. Clin. Immunol. Immunopathol., 57, 297–307PubMedCrossRefGoogle Scholar
  50. 50.
    Rinaldo, J. E. and Rogers, R. M. (1982). Adult respiratory distress syndrome-changing concepts of lung injury and repair. N. Engl. J. Med., 306, 900–909PubMedCrossRefGoogle Scholar
  51. 51.
    Simon, R. H. and Ward, P. A. (1988). Adult Respiratory Distress Syndrome Inflammation: Basic Principles and Clinical Correlates, pp. 815–826. (New York: Raven Press, Ltd.)Google Scholar
  52. 52.
    Herndon, D. N. and Traber, D. L. (1990). Pulmonary failure and acute respiratory distress syndrome. Multiple organ failure. In: Deitch, E. A. (ed.), Pathophysiology and Basic Concepts of Therapy, pp. 192–214. (New York: Thieme)Google Scholar
  53. 53.
    Hoffman, T., Bottger, E. C, Baum, H. P., Dennebaum, R., Hadding, U. and Bitter-Suermann, D. (1986). Evaluation of low dose anaphylatoxin peptides in the pathogenesis of the adult respiratory distress syndrome (ARDS). Monitoring of early C5a effects in a guinea pig in vivo model after i.v. application. Eur. J. Clin. Invest., 16, 500–508CrossRefGoogle Scholar
  54. 54.
    Hoffmann, T., Bottger, E. C, Baum, H. P., Messner, M., Hadding, U. and Bitter-Suermann, D. (1988). In vivo effects of C3a on neutrophils and its contribution to inflammatory lung processes in a guinea pig model. Clin. Exp. Immunol., 71, 486–492PubMedGoogle Scholar
  55. 55.
    Lo, S. K., van Seventer, G. A., Levin, S. M. and Wright, S. D. (1989). Two leukocyte receptors (CD 11 a/CD 18 and CD1 lb/CD 18) mediate transient adhesion to endothelium by binding to different ligands. J. Immunol., 143, 3325–3329PubMedGoogle Scholar
  56. 56.
    Lo, S. K., Detmers, P. A., Levin, S. M. and Wright, S. D. (1989). Transient adhesion of neutrophils to endothelium. J. Exp. Med., 169, 1779–1793PubMedCrossRefGoogle Scholar
  57. 57.
    Tonnesen, M. G. (1989). Neutrophil-endothelial cell interaction mechanism of neutrophil adherence to vascular endothelium. J. Invest. Dermatol., 93, 53S–58SPubMedCrossRefGoogle Scholar
  58. 58.
    Tonnesen, M. G., Anderson, D. C, Springer, T. A., Knedler, A., Avdi, N. and Henson, P. M. (1989). Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the mac-1, lfa-1, p. 150,95 glycoprotein family. J. Clin. Invest., 83, 637–646PubMedCrossRefGoogle Scholar
  59. 59.
    Yancey, K. B., Lawley, T. J., Dersookian, M. and Harvath, L. (1989). Analysis of the interaction of human C5a and C5a desarg with human monocytes and neutrophils: flow cytometric and chemotaxis studies. J. Invest. Dermatol., 92, 184–189PubMedCrossRefGoogle Scholar
  60. 60.
    Goodman, M. C, Chenoweth, D. E. and Weigle, W. O. (1982). Induction of interleukin-1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors. J. Exp. Med., 156, 6652CrossRefGoogle Scholar
  61. 61.
    Burger, R., Bader, A., Kirschtink, M., Rother, U., Schrod, L., Worner, I., Zilow, G. (1987). Functional analysis and quantification of the complement C3 derived anaphylatoxin C3a with a monoclonal antibody. Clin. Exp. Immunol, 68, 703–711PubMedGoogle Scholar
  62. 62.
    Stimler, N. P., Hugli, T. E. and Bloor, C. M. (1980). Pulmonary injury induced by C3a and C5a anaphylatoxins. Am. J. Pathol., 100, 327–328PubMedGoogle Scholar
  63. 63.
    Huey, R., Bloor, C. M., Kawahara, M. S. and Hugli, T. E. (1983). Potentiation of the anaphylatoxins in vivo using an inhibitor of serum carboxypeptidase N (SCPN). I. Lethality and pathologic effects on pulmonary tissue. Am. J. Pathol., 112, 48–60PubMedGoogle Scholar
  64. 64.
    Hangen, D. H., Segall, G. M., Harney, E. W., Stevens, J. H., McDougall, I. R. and Raffin, T. A. (1990). Kinetics of leukocyte sequestration in the lungs of acutely septic primates. A study using 111 lN-labelled autologuos leukocytes. J. Surg. Res., 48, 196–203PubMedCrossRefGoogle Scholar
  65. 65.
    Hangen, D. H., Stevens, J. H., Satoh, P. S., Hall, E. W., O’Hanley, P. T. and Raffin, T. A. (1989). Complement levels in septic primates treated with anti-C5a antibodies. J. Surg. Res., 46, 195–199PubMedCrossRefGoogle Scholar
  66. 66.
    Stevens, J. H., O’Hanley, P., Shapiro, J. M., Mihm, F. G., Satoh, P. S., Collins, J. A. and Raffin, T. A. (1986). Effects of anti-C5a antibodies in the adult respiratory distress syndrome in septic primates. J. Clin. Invest., 77, 1812–1818PubMedCrossRefGoogle Scholar
  67. 67.
    Worthen, G. S., Haslett, C, Rees, J., Irving, C. G., Gumbay, R. S., Henson, J. E. and Henson, P. M. (1987). Neutrophil-mediated pulmonary vascular injury: synergistic effect of trace amounts of lipopolysaccharide and neutrophil stimuli on vascular permeability and neutrophil sequestration in the lung. Am. Rev. Respir. Dis., 136, 19–28PubMedCrossRefGoogle Scholar
  68. 68.
    Neumann, M. and Kownatzki, E. (1989). The effect of adherence on the generation of reactive oxygen species by human neutrophilic granulocytes. Agents Actions, 26, 183–185PubMedCrossRefGoogle Scholar
  69. 69.
    Craddock, P. R. (1984). Complement, granulocytes and shock lung. Am. J. Emerg. Med., 2, 78–81PubMedCrossRefGoogle Scholar
  70. 70.
    Till, G. O. and Ward, P. A. (1985). Oxygen radicals in complement and neutrophil mediated acute lung injury. J. Free Radical Biol. Med., 1, 163–168CrossRefGoogle Scholar
  71. 71.
    Braude, S., Krausz, T., Apperley, J., Goldman, J. M. and Royston, D. (1985). Adult respiratory distress syndrome after allogenic bone-marrow transplantation: evidence for a neutrophil independent mechanism. Lancet, 1, 1239–1242PubMedCrossRefGoogle Scholar
  72. 72.
    Laufe, M. D., Simon, H., Flint, A. and Keller, J. B. (1986). Adult respiratory distress syndrome in neutropenic patients. Am. J. Med., 80, 1022–1026PubMedCrossRefGoogle Scholar
  73. 73.
    Maunder, R. J., Hackman, R. C, Riff, E., Albert, R. K. and Springmeyer, S. C. (1986). Occurrence of the adult respiratory distress syndrome in neutropenic patients. Am. Rev. Respir. Dis., 133, 313–316PubMedGoogle Scholar
  74. 74.
    Ognibene F. P. Martin S. E. Parker M. M. Schlesinger T. Roach P. Burch C. et al. 1986. Adult respiratory distress syndrome in patients with severe neutropenia. N. Engl. J. Med. 315 547–55Google Scholar
  75. 75.
    Fowler, A. A., Walchak, S., Giclas, P. C, Henson, P. H. and Hyers, T. M. (1982). Characterization of antiproteinase activity in the adult respiratory distress syndrome. Chest, 81, 50S–51SCrossRefGoogle Scholar
  76. 76.
    Lee, C. T., Fein, A. M., Lippman, M., Holtzman, H., Kimbel, P. and Wienbaum, G. (1981). Elastolytic activity in pulmonary lavage fluid from patients with the adult respiratory distress syndrome. N. Engl. J. Med., 304, 192–196PubMedCrossRefGoogle Scholar
  77. 77.
    McGuire, W. W., Spragg, R. G., Cohen, A. M. and Cochrane, C. G. (1982). Studies on the pathogenesis of the adult respiratory distress syndrome. J. Clin. Invest., 69, 543–553PubMedCrossRefGoogle Scholar
  78. 78.
    Robbins, C. A., Russ, W. D., Rasmussen, J. K. and Clayton, M. M. (1987). Activation of the complement system in the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 135, 651–658PubMedGoogle Scholar
  79. 79.
    Strunk, R. C, Eidlen, D. M. and Mason, R. J. (1988). Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J. Clin. Invest., 81, 1419–1426PubMedCrossRefGoogle Scholar
  80. 80.
    Moser, R., Schleiffenbaum, B., Groscurth, P. and Fehr, J. (1989). Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J. Clin. Invest., 83, 444–455PubMedCrossRefGoogle Scholar
  81. 81.
    Schleiffenbaum, B. and Fehr, J. (1990). The tumor necrosis factor receptor and human neutrophil function. J. Clin. Invest., 86, 184–195PubMedCrossRefGoogle Scholar
  82. 82.
    Porteu, F. and Nathan, C. (1990). Shedding of tumor necrosis factor receptors by activated human neutrophils. J. Exp. Med., 172, 599–607PubMedCrossRefGoogle Scholar
  83. 83.
    Grisham, M. B., Evers, J. and Janssen, H. F. (1988). Endotoxemia and neutrophil activation in vivo. Am. J. Physiol., 254, H1017–H1022PubMedGoogle Scholar
  84. 84.
    Beutler, B., Milsark, I. W. and Cerami, A. C. (1985). Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science, 229, 869–871PubMedCrossRefGoogle Scholar
  85. 85.
    Ohlsson, K., Bjork, P., Bergenfeldt, M., Hageman, R. and Thompson. R. C. (1990). Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature, 348, 550–553PubMedCrossRefGoogle Scholar
  86. 86.
    Wakabayashi, G., Gelfand, J. A., Durke, J. K., Thompson, R. C. and Dinarello, C. A. (1991). A specific receptor antagonist for interleukin-1 prevents Escherichia coli-induced shock in rabbits. FASEB J., 5, 338–343PubMedGoogle Scholar
  87. 87.
    Smedegard, G., Lianxian, C. and Hugli, T. E. (1989). Endotoxin-induced shock in the rat: A role for C5a. Am. J. Pathol, 135, 489–497PubMedGoogle Scholar
  88. 88.
    Bengtson, A. and Heideman, M. (1988). Anaphylatoxin formation in sepsis. Arch. Surg., 123, 645–649PubMedCrossRefGoogle Scholar
  89. 89.
    Davis, J. M, Meyer, J. D., Barie, P. S., Yurt, R. W., Duhaney, R., Dineen, P. and Shires, G. T. (1990). Elevated production of neutrophil leukotriene B4 precedes pulmonary failure in critically ill surgical patients. Surg. Gynecol. Obstet., 170, 495–500PubMedGoogle Scholar
  90. 90.
    Hallgren, R., Samuelsson, T. and Modig, J. (1987). Complement activation and increased alveolar-capillary permeability after major surgery and in adult respiratory distress syndrome. Crit. Care Med., 15, 189–193PubMedCrossRefGoogle Scholar
  91. 91.
    Heidemann, M. and Hugli, T. E. (1984). Anaphylatoxin generation in multisystem organ failure. J. Trauma, 24, 1038–1043CrossRefGoogle Scholar
  92. 92.
    Heidemann, M., Norder-Hanssen, B., Bengston, A. and Mollnes, T. E. (1988). Terminal complement complexes and anaphylatoxins in septic and ischemic patients. Arch. Surg., 123, 188–192CrossRefGoogle Scholar
  93. 93.
    Lamy, M., Deby-Dupont, G., Pincemail, J., Braun, M., Dochateau, J., Deby, C., van Erck, J., Bodson, L., Damas, P. and Franchimont, P. (1985). Biochemical pathways of active lung injury. Bull. Eur. Physiopathol. Respir., 21, 221–229PubMedGoogle Scholar
  94. 94.
    Langlois, P. F., Gawryl, M. S., Zeller, J. and Lint, T. (1989). Accentuated complement activation in patient plasma during the adult respiratory distress syndrome: a potential mechanism for pulmonary inflammation. Heart Lung, 18, 71–84PubMedGoogle Scholar
  95. 95.
    Tennenberg, S. D., Jacobs, M. P. and Solomkin, J. S. (1987). Complement-mediated neutrophil activation in sepsis-and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans. Arch. Surg., 122, 26–32PubMedCrossRefGoogle Scholar
  96. 96.
    Hack, C. E., Nuijens, J. H., Felt-Bersma, R. J. F., Schreuder, W. O., Eerenberg-Belmer, A. J. M., Paardekooper, J., Bronsveld, W. and Thijs, L. G. (1989). Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with fatal outcome in sepsis. Am. J. Med., 86, 20–26PubMedCrossRefGoogle Scholar
  97. 97.
    Kellermann, W., Frentzel-Beyme, R., Welte, M. and Jochum, M. (1989). Phospholipase a in acute lung injury after trauma and sepsis: its relation to the inflammatory mediators PMN-elastase, C3a and neopterin. Klin. Wochenschr., 67, 190–195PubMedCrossRefGoogle Scholar
  98. 98.
    Solomkin, J. S., Cotta, L. A., Satoh, P. S., Hurst, J. M. and Nelson, R. D. (1985). Complement activation and clearance in acute illness and injury: evidence for c5a as a cell-directed mediator of the adult respiratory distress syndrome in man. Surgery, 97, 668–678PubMedGoogle Scholar
  99. 99.
    Weigelt, J. A., Chenoweth, D. E., Borman, K. R. and Norcross, J. F. (1988). Complement and the severity of pulmonary failure. J. Trauma, 28, 1013–1019PubMedCrossRefGoogle Scholar
  100. 100.
    Zilow, G., Sturm, J. A., Rother, U. and Kirschfink, M. (1990). Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin. Exp. Immunol., 79, 151–157PubMedCrossRefGoogle Scholar
  101. 101.
    Langlois, P. F. and Gawryl, M. S. (1988). Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am. Rev. Respir. Dis., 138, 368–375PubMedGoogle Scholar
  102. 102.
    Hack, C. E., DeGroot, E. R., Felt-Bersma, R. J., Nuijens, J. H., Strack Van Schijndel, R. J., Eerenberg-Belmer, A. J., Thijs, L. G. and Aarden, L. A. (1989). Increased plasma levels of interleukin 6 in sepsis. Blood, 74, 1704–1710PubMedGoogle Scholar
  103. 103.
    Chenoweth, D. E. (1987). The properties of human C5a anaphylatoxin. The significance of C5a formation during hemodialysis. Contrib. Nephrol., 59, 51–71PubMedGoogle Scholar
  104. 104.
    Chenoweth, D. E. (1986). Anaphylatoxin formation in extracorporal circuits. Complement, 3, 152–165PubMedGoogle Scholar
  105. 105.
    Bingel, M., Arndt, W., Schulze, M., Floege, J., Shaldon, S., Koch, K. M. and Goetze, O. (1989). Comparative studies of C5a plasma levels with different hemodialysis membranes using an enzyme-linked immunosorbent assay. Nephron, 51, 320–324PubMedCrossRefGoogle Scholar
  106. 106.
    Deppisch, R., Schmitt, V., Bommer, J., Hansch, G. M., Ritz, E. and Rauterberg, E. W. (1990). Fluid phase generation of terminal complement complex as a novel index of bioincompatibility. Kidney Int., 37, 669–706CrossRefGoogle Scholar
  107. 107.
    Schaefer, R. M., Rauterberg, E. W., Deppisch, R. and Vienken, J. (1990). Assembly of SC5b-9 complement complex: A new index of blood-membrane interaction. Miner. Electrolyte Metab., 16, 73–76PubMedGoogle Scholar
  108. 108.
    Chenoweth, D. E. and Henderson, L. W. (1987). Complement activation during hemodialysis: Laboratory evaluation of hemodialyzers. Artif. Organs, 11, 155–162PubMedCrossRefGoogle Scholar
  109. 109.
    Falkenhagen, D., Bosch, T., Brown, G. S., Schmidt, B., Holtz, M., Baurmeister, U., Gurland, H. and Klinkmann, H. (1987). A clinical study on different cellulosic dialysis membranes. Nephrol. Dial. Transplant., 2, 537–545PubMedGoogle Scholar
  110. 110.
    Lucchi, L., Bonucchi, D., Acerbi, M. A., Cappelli, G., Spattini, A., Innocenti, M., Castellani, A. and Lusvarghi, E. (1989). Improved biocompatibility by modified cellulosic membranes: the case of hemophan. Artif. Organs, 13, 417–421PubMedCrossRefGoogle Scholar
  111. 111.
    Cheung A. K. 1989. Adsorption of unactivated complement proteins by hemodialysis membranes. Am. J. Kidney Dis. 14 472–47Google Scholar
  112. 112.
    Cheung, A. K., Parker, J. F., Wilcox, L. A. and Janatova, J. (1990). Activation of complement by hemodialysis membranes: Polyacrylonitrile bind more C3a than Cuprophan. Kidney Int., 37, 1055–1059PubMedCrossRefGoogle Scholar
  113. 113.
    Horl, E. I., Wanner, C, Frischmuth, N., Gosele, A. and Masry, S. G. (1990). Plasma levels of main granulocyte components during hemodialysis. Comparison of new and reused dialyzers. Am. J. Nephrol., 10, 53–57PubMedGoogle Scholar
  114. 114.
    Cavarocci, N. C, Schaff, H. V., Orszulak, T. A., Homburger, H. A., Schnell, W. A. Jr and Pluth, J. R. (1985). Evidence for complement activation by protamine-heparin interaction after cardiopulmonary bypass. Surgery, 89, 525–531Google Scholar
  115. 115.
    Shastri, K. A., Phillips, M. J., Raza, S., Logue, G. and Rustagi, P. K. (1988). Effects of RBCs on the activation of human complement by heparin-protamine complexes. Blood, 71, 36–40PubMedGoogle Scholar
  116. 116.
    Tan, F., Jackman, K., Skidgel, R. A., Zsigmond, E. K. and Erdos, E. G. (1989). Protamine inhibits plasma carboxypeptidase N, the inactivator of anaphylatoxins and kinins. Anaesthesiology, 70, 267–275CrossRefGoogle Scholar
  117. 117.
    Click, R. L., Homburger, H. A. and Bove, A. A. (1989). Complement activation from protamine sulfate administration after coronary angiography. Cathet. Cardiovasc. Diagn., 16, 221–225PubMedCrossRefGoogle Scholar
  118. 118.
    Lewis, S. L., Van Epps, D. E. and Chenoweth, D. E. (1987). Leukocyte C5a receptor modulation during hemodialysis. Kidney Int., 31, 112–120PubMedCrossRefGoogle Scholar
  119. 119.
    Lewis, S. L. and Van Epps, D. E. (1987). Neutrophil and monocyte alternations in chronic dialysis patients. Am. J. Kidney Dis., 9, 381–395PubMedGoogle Scholar
  120. 120.
    Stahl, G. L., Amsterdam, E. A., Symons, J. D. and Longhurst, J. C. (1990). Role of thromboxane A2 in the cardiovascular response to intracoronary C5a. Circ. Res., 66, 1103–1111PubMedCrossRefGoogle Scholar
  121. 121.
    Del Balzo, U., Sakuma, I. and Levi, R. (1990). Cardiac dysfunction caused by recombinant human C5a anaphylatoxin: mediation by histamine adenosine and cyclooxygenase arachidonate metabolites. J. Pharmacol. Exp. Ther., 253, 171–179PubMedGoogle Scholar
  122. 122.
    Ito, B. R., Roth, D. M. and Engler, R. L. (1990). Thromboxane A2 and peptidoleukotrienes contribute to the myocardial ischemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ. Res., 66, 596–607PubMedCrossRefGoogle Scholar
  123. 123.
    Del Balzo, U. H., Levi, R. and Polley, M. J. (1985). Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc. Natl. Acad. Sci. USA, 82, 886–890PubMedCrossRefGoogle Scholar
  124. 124.
    Yasudam, M., Kawarabayashi, T., Akioka, K., Teragaki, M., Oku, H. and Kanayama, Y. (1989). The complement system in the acute phase of myocardial infarction. Jpn. Circ. J., 53, 1017–1022CrossRefGoogle Scholar
  125. 125.
    Christophers, E. and Henseler, T. (1989). Patient subgroups and the inflammatory pattern in psoriasis. Acta Derm. Venereol. Suppl. Stockh., 151, 88–92PubMedGoogle Scholar
  126. 126.
    Takematsu H. Ohkohchi K. and Tagami H. 1986. Demonstration of anaphylatoxin C3a C4a and c5a in the scales of psoriasis and inflammatory pustular dermatoses. Br. J. Dermatol. 114 1–Google Scholar
  127. 127.
    Takematsu, H., Terui, T., Ohkohchi, K., Tagami, H., Suzuki, R. and Kuhmagi, K. (1986). Presence of chemotactic peptides other than C5a anaphylatoxin in scales of psoriasis and sterile pustular dermatoses. Acta Derm. Venereol. Suppl. Stockh., 66, 93–97Google Scholar
  128. 128.
    Takematsu, H., Terui, T. and Tagami, H. (1986). Demonstration of leukotriene B4 in the scale extracts of psoriasis and inflammatory pustular dermatoses. Correlation with leukocyte chemotactic activity and C5a anaphylatoxin. Acta Derm. Venereol. Suppl. Stockh., 66, 6–10Google Scholar
  129. 129.
    Schroder J. M. and Christophers E. 1986. Identification of C5a desarg and a neutrophil activating peptide ANAP in psoriatic scales. J. Invest. Dermatol. 87 53–5Google Scholar
  130. 130.
    Asbakk, K., Bergh, K. and Iversen, O. J. (1990). The psoriasis associated antigen, pso p27, participates in the formation of complement activating immune complexes in psoriatic scale. Acta Pathol. Microbiol. Immunol. Scand., 98, 143–149Google Scholar
  131. 131.
    Kapp, A., Wokalek, H. and Schopf, E. (1985). Involvement of complement in psoriasis and atopic dermatitis measurement of C3a and C5a, C3, C4 and CI inactivator. Arch. Dermatol. Res., 277, 359–361PubMedCrossRefGoogle Scholar
  132. 132.
    Ohkochi, K., Takematsu, H. and Tagami, H. (1985). Increased anaphylatoxins (C3a and C4a) in psoriatic sera. Br. J. Dermatol., 113, 189–196CrossRefGoogle Scholar
  133. 133.
    Weissmann, G. and Korchak, H. (1984). Rheumatoid arthritis. The role of neutrophil activation. Inflammation, 8, S3–S14PubMedCrossRefGoogle Scholar
  134. 134.
    Moxley, G. and Rudy, S. (1987). Elevated plasma C3 anaphylatoxin levels in rheumatoid arthritis patients. Arthritis Rheum., 30, 1097–1104PubMedCrossRefGoogle Scholar
  135. 135.
    Moxley, G. and Rudy, S. (1985). Elevated plasma C3 anaphylatoxin levels in synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum., 28, 1089–1095PubMedCrossRefGoogle Scholar
  136. 136.
    Haslett, C, Jose, P. J., Giclas, P. C, William, T. J. and Henson, P. M. (1989). Cessation of neutrophil influx in C5a-induced acute experimental arthritis is associated with loss of chemoattractant activity from the joint space. J. Immunol., 142, 3510–3517PubMedGoogle Scholar
  137. 137.
    Elmgreen, J. and Hansen, T. M. (1985). Subnormal sensitivity of neutrophils to complement split product C5a in rheumatoid arthritis: relation to complement catabolism and disease extent. Ann. Rheum. Dis., 44, 514–518PubMedCrossRefGoogle Scholar
  138. 138.
    Hermann, E., Vogt, P., Hagemann, W., Dunky, A. and Muller, W. (1988). Synovial level of interleukin-1 and C3a in chronic polyarthritis, psoriatic arthritis and activated arthritis. Z. Rheumatol., 47, 20–50PubMedGoogle Scholar
  139. 139.
    Belmont, H. M., Hopkins, P., Edelson, H. S., Kaplan, H. B., Ludewig, R., Weissmann, G. and Abramson, S. (1986). Complement activation during systemic lupus erythematosus. C3a and C5a anaphylatoxins circulate during exacerbations of disease. Arthritis Rheum., 29, 1085–1089PubMedCrossRefGoogle Scholar
  140. 140.
    Hopkins, P., Belmont, H. M., Buyon, J., Phillips, M., Weissmann, G. and Abramson, S. B. (1988). Increased levels of plasma anaphylatoxins in systemic lupus erythematosus predict flares of the disease and may elicit vascular injury in lupus cerebritis. Arthritis Rheum. 31, 632–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • J. Köhl
  • D. Bitter-Suermann

There are no affiliations available

Personalised recommendations