Advertisement

Two Dimensional Patterns In A Model For The Electrohydrodynamic Instability Of Nematic Liquid Crystals

  • P. De Brouwer
  • D. Walgraef
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 267)

Abstract

The study of the different patterns which appear beyond the electrohydrodynamic instability of nematic liquid crystals is performed in the framework of a dynamical model of the Proctor-Sivashinsky type. This model describes the experimentally observed transitions between rolls, zig-zag and bimodal structures.

Keywords

Nematic Liquid Crystal Amplitude Equation Closed Domain Normal Roll Linear Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Joets and R. Ribotta, J. Physique 47 (1986), p. 595.CrossRefGoogle Scholar
  2. 2.
    S. Kai and W. Zimmerman, Prog.Theor Phys. 99 (1989), p. 458.CrossRefGoogle Scholar
  3. 3.
    E. Dubois-Violette, P.G. De Gennes and O. Parodi, J. Physique 32 (1971), p. 305.CrossRefGoogle Scholar
  4. 4.
    W. Pesch and L. Kramer, Z.Physik B63 (1986), p. 121.Google Scholar
  5. 5.
    E. Bodenschatz, W. Zimmerman and L. Kramer, J. Physique 49 (1988), p. 1875.CrossRefGoogle Scholar
  6. 6.
    D. Walgraef, in “Nematics,” J.M. Coron et al., eds., Kluwer. Dordrecht, 1991, p. 391.CrossRefGoogle Scholar
  7. 7.
    J. Swift and P.C. Hohenberg, Phys.Rev. A15 (1977), p. 319.Google Scholar
  8. 8.
    D. Walgraef and C. Schiller, Physica D27 (1987), p. 423.Google Scholar
  9. 9.
    D. Walgraef, Solid state Phenomena 3-4 (1988), p. 77.Google Scholar
  10. 10.
    E. Guazzelli, G. Dewel, P. Borckmans and D. Walgraef, Physica D 35 (1989), p. 220.CrossRefGoogle Scholar
  11. 11.
    P. De Brouwer, “Pattern Formation in Nematics subjected to an Oscillating Electrical Field,” Licenciaat Thesis, Vrije Universiteit Brussel, 1991.Google Scholar
  12. 12.
    J. Toner and D. Nelson, Phys.Rev. B23 (1981), p. 316.MathSciNetGoogle Scholar
  13. 13.
    D. Walgraef, Pattern Evolution in Extended Nonequililrium Systems, preprint, Free University of Brussels, 1992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • P. De Brouwer
    • 1
  • D. Walgraef
    • 1
    • 2
  1. 1.Service de Chimie-PhysiqueUniversité Libre de BruxellesBrusselsBelgium
  2. 2.National Fund for Scientific ResearchBelgium

Personalised recommendations