Spectroelectrochemical (UV/VIS/Near IR, EPR) Studies of Coordination Complexes

  • S. A. MacGregor
  • E. McInnes
  • R. J. Sorbie
  • L. J. Yellowlees
Part of the NATO ASI Series book series (ASIC, volume 385)


The design of variable temperature speclroclcclrochcmical cells Tor use in uv/vis/nir and epr spectrometers is detailed. The systems investigated using the spcctroeleclrochemical cells are binuclcar mixed-valence ruthenium and osmium complexes and mononuclear Pt species. Intervalence charge transfer (IVCT) bands of the mixed-valence compounds are studied in situ with the M(II),M(III) state elcctrochcmically generated from the parent M(II),M(II) complex. The symmetric species [M2(μ-Cl)3L6]2+ where M = Ru,Os and L is a tertiary phosphine ligand are class III delocaliscd systems whereas the asymmetric complex [Cl(PPh3)2Ru(-Cl)3Ru(PPh3)2CS]+ is a class II, valence trapped compound. Removal of electrons from the symmetric complex results in metal-metal interaction as confirmed by single crystal X-ray determinations of [OS2(μ-CI)3(PEt3)6]+ and [OS2(μ-CL)3(PET3)O6]2+ The thermal election transfer rate constant is determined for the mixed-valence asymmetric complex from the IVCT band; kth=2.9 × 104 s-1. The complex [Pt(bpy)Cl2] has a reversible onc-eletron reduction. The electronic character of the semi-occupied molecular orbital (SOMO) of [Pt(bpy)Cl2]- is studied by epr and uv/vis/nir spcctroelectrochemistry and is determined to be primarily bpy-bascd. Epr data arc also given for [Pt(dpk)Cl2]- and [Pt(B10H12)2]3-, the SOMO of the former complex is ligand-bascd but has considerably greater Pi character in the second.


Lower Unoccupied Molecular Orbital Hyperfine Coupling Constant Intervalence Charge Transfer IVCT Band Asymmetric Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For recent general reviews, see (a) C.A. Widrig, M.D. Porter, M.D. Ryan, T.G. Strein, A.G. Ewing, Anal. Chem., (1990), 62, 1RCrossRefGoogle Scholar
  2. 1.(b)
    K.M. Kadish, X. Mu, Pure Appl. Chem., (1990), 62, 1051.CrossRefGoogle Scholar
  3. 2.
    M.B. Robin, P. Day, Adv. Inorg. Chem. and Radiochem., (1967), 10, 247.CrossRefGoogle Scholar
  4. 3.(a)
    C. Creutz, Prog. Inorg. Chem., (1983), 30, 1CrossRefGoogle Scholar
  5. 3.(b)
    B.S. Brunschwig, S. Ehrenson, N. Sutin, J. Phys. Chem., (1986), 90, 3657.CrossRefGoogle Scholar
  6. 4.
    C. Creutz, M.H. Chou, Inorg. Chem., (1987), 26, 2995.CrossRefGoogle Scholar
  7. 5.
    P.S. Braterman, J.-I. Song, C. Vogler, W. Kaim, Inorg. Chem., (1992), 31, 222.CrossRefGoogle Scholar
  8. 6.
    J. Chatt, R.G. Hayter, J. Chem. Soc, (1961), 896.Google Scholar
  9. 7.
    V.T. Coombe, PhD Thesis, University of Edinburgh, 1985.Google Scholar
  10. 8.
    P.W. Armit, WJ. Sime, T.A. Stephenson, J. Chem. Soc, Dalton Trans., (1976), 2121.Google Scholar
  11. 9.
    G.T. Morgan, F.H. Burstall, J. Chem. Soc, (1934), 965.Google Scholar
  12. 10.
    F. Klanberg, P.A. Wegner, G.W. Parshall, E.L. Muetterties, Inorg. Chem., (1968), 7, 2073.Google Scholar
  13. 11.
    G.A. Heath, L.J. Yellowlees, P.S. Braterman, J. Chem. Soc, Chem. Commun. (1981), 287.Google Scholar
  14. 12.
    M.R. Low PhD Thesis, University of Edinburgh, 1987.Google Scholar
  15. 13.
    J. Howell, A. Rossi, D. Wallace, K. Haraki, R. Hoffmann, ICON, Quantum Chemistry Program Exchange, Univ. Indiana, (1977), no. 344.Google Scholar
  16. 14.
    E.A. Seddon and K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, (1984)Google Scholar
  17. 15.
    FA. Cotton, R.C. Torralba, Inorg. Chem., (1991), 30, 2196.CrossRefGoogle Scholar
  18. 16.
    G.A. Heath, A.J. Lindsay, T.A. Stephenson, D.K. Vattis, J. Organomet. Che., (1982), 233, 353.CrossRefGoogle Scholar
  19. 17.
    R.J. Sorbie, PhD Thesis, University of Edinburgh, 1989.Google Scholar
  20. 18.
    M. Laing, L. Pope, Acta Crytallogr., (1976), 332, 1547.Google Scholar
  21. 19.
    M.J. Powers, T.J. Meyer, J. Am. Chem. Soc, (1980), 102, 1239.CrossRefGoogle Scholar
  22. 20.
    N.S. Hush, J.K. Beattie, V.M. Ellis, Inorg. Chem., (1984), 23, 3339.CrossRefGoogle Scholar
  23. 21.
    A.J. Fraser, R.O. Gould, J. Chem. Soc, Dalton Trans., (1974), 1139.Google Scholar
  24. 22.
    N.S. Hush, Prog. Inorg. Chem., (1967), 8, 391.CrossRefGoogle Scholar
  25. 23.
    T.J. Meyer, Chem. Phys. Lett., (1979), 64, 417.CrossRefGoogle Scholar
  26. 24.
    V.M. Miskowski, V.H. Houlding, Inorg. Chem., (1989), 28, 1529.CrossRefGoogle Scholar
  27. 25.
    V.T. Coombe, G.A. Heath, A.J. MacKenzie, L.J. Yellowlees, Inorg. Chem., (1984), 23, 3423.CrossRefGoogle Scholar
  28. 26.
    R.J. Klinger, J.C. Huffman, J.K. Kochi, J. Am. Chem. Soc, (1982), 104, 2147.CrossRefGoogle Scholar
  29. 27.
    R.S. Osborn, D. Rogers, J. Chem. Soc, Dalton Trans., (1974), 1002.Google Scholar
  30. 28.
    A.H. Maki, N. Edelstein, A. Davidson, R.H. Holm, J. Am. Chem. Soc, (1964), 86, 4580.CrossRefGoogle Scholar
  31. 29.(a)
    N.G. Connelly, W.E. Geiger, G.A. Lane, S.J. Raven, P.H. Rieger, J. Am. Chem. Soc, (1986), 108, 6219CrossRefGoogle Scholar
  32. 29.(b)
    J.A. De Gray, W.E. Geiger, G.A. Lane, P.H. Rieger, Inorg. Chem., (1991), 30, 4100.CrossRefGoogle Scholar
  33. 30.
    J.S. Morton, K.J. Preston, J. Magn. Reson., (1978), 30, 577.Google Scholar
  34. 31.
    S.A. Macgregor, PhD Thesis, Universily of Edinburgh, 1992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • S. A. MacGregor
    • 1
  • E. McInnes
    • 1
  • R. J. Sorbie
    • 1
  • L. J. Yellowlees
    • 1
  1. 1.Department of ChemistryUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations