Skip to main content
Book cover

Xanthomonas pp 121–156Cite as

The bacterium Xanthomonas

  • Chapter

Abstract

Since the reviews on the biology of Xanthomonas by Starr (1981) and Bradbury (1984, 1986), many new data have appeared. In this chapter we will emphasize the common bacteriological features and the physiological potential of Xanthomonas. It is our aim to stress the wealth of physiological activities displayed by this bacterium. We will not dwell on the use of the different features in taxonomy. Some topics which have been reviewed by others will only be referred to and will not be treated in detail here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo-El-Dahab, M.K. (1964) Production of pectic and cellulolytic enzymes by Xanthomonas malvacearum. Phytopathology, 54, 597–601.

    CAS  Google Scholar 

  • Andrewes, A.G., Hertzberg, S., Liaaen-Jensen, S. and Starr, M.P. (1973) The Xanthomonas ‘carotenoids’ — non-carotenoid, brominated, aryl-polyene esters. Acta Chemica Scandinavica, 27, 2382–95.

    Google Scholar 

  • Andrewes, A.G., Jenkins, C.L., Starr, M.P., Shepherd, J. and Hope, H. (1976) Structure of xanthomonadin I, a novel dibrominated arylpolyene pigment produced by the bacterium Xanthomonas juglandis. Tetrahedron Letters, 45, 4023–4.

    Google Scholar 

  • Arella, M. and Sylvestre, M. (1979) Production of an extracellular ribonuclease by Pseudomonas maltophilia. Canadian Journal of Microbiology, 25, 321–8.

    PubMed  CAS  Google Scholar 

  • Aririatu, L.E. and Kester, A.S. (1985) Isolation and characterization of the pigment esters of Xanthomonas juglandis (campestris). Journal of General Microbiology, 131, 2047–52.

    CAS  Google Scholar 

  • Auling, C., Busse, H.-J., Pilz, F., Webb, L., Kneifel, H. and Claus, D. (1991) Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. International Journal of Systemic Bacteriology, 41, 223–8.

    CAS  Google Scholar 

  • Austin, J.W., Stewart, M. and Murray, R.G.E. (1990) Structural and chemical characterization of the S layer of a Pseudomonas-like bacterium. Journal of Bacteriology, 172, 808–17.

    PubMed  CAS  Google Scholar 

  • Barry, A.L., Thornsberry, C. and Jones, R.N. (1986) In vitro evaluation of A-56619 and A-56620, two new quinolones. Antimicrobial Agents in Chemotherapy, 29, 40–3.

    CAS  Google Scholar 

  • Bender, C.L., Malvick, D.K., Conway, K.E., George, S. and Pratt, P. (1990) Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 56, 170–5.

    PubMed  CAS  Google Scholar 

  • Bicknell, R., Emanuel, E.L., Gagnon, J. and Waley, S.G. (1985) The production and molecular properties of the zinc β-lactamase of Pseudomonas maltophilia IID 1275. Biochemical Journal 229, 791–7.

    PubMed  CAS  Google Scholar 

  • Birch, R.G. and Patil, S.S. (1985) Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. Journal of General Microbiology, 131, 1069–75.

    PubMed  CAS  Google Scholar 

  • Bottone, E.J., Reitano, M., Janda, J.M., Troy, K. and Cuttner, J. (1986) Pseudomonas maltophilia exoenzyme activity as correlate in pathogenesis of ecthyma gangrenosum. Journal of Clinical Microbiology, 24, 995–7.

    PubMed  CAS  Google Scholar 

  • Bradbury, J.F. (1984) Genus II. Xanthomonas Dowson 1939, 187AL, in Bergey’s Manual of Systematic Bacteriology, Vol. 1 (ed. N.R. Krieg), Williams & Wilkins, Baltimore, pp. 199–210.

    Google Scholar 

  • Bradbury, J.F. (1986) Xanthomonas Dowson 1939, 187, in Guide to Plant Pathogenic Bacteria, CAB International Mycological Institute, Slough, pp. 198–260.

    Google Scholar 

  • Brinkerhoff, L.A. (1963) Variability of Xanthomonas malvacearum. The cotton bacterial blight pathogen. Technical Bulletin T-98. Agricultural Experiment Station, Oklahoma State University, Stillwater.

    Google Scholar 

  • Brown, A.T. and Wagner, C. (1970) Regulation of enzymes involved in the conversion of tryptophan to nicotinamide adenine dinucleotide in a colorless strain of Xanthomonas pruni. Journal of Bacteriology, 101, 456–63.

    PubMed  CAS  Google Scholar 

  • Burkholder, W.H. and Starr, M.P. (1948) The generic and specific characters of phytopathogenic species of Pseudomonas and Xanthomonas. Phytopathology, 38, 494–502.

    Google Scholar 

  • Byng, G.S., Johnson, J.L., Whitaker, R.J., Gherna, R.L. and Jensen, R.A. (1983) The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. Molecular Evolution, 19, 272–82.

    CAS  Google Scholar 

  • Byng, G.S., Whitaker, R.J., Gherna, R.L. and Jensen, R.A. (1980) Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. Journal of Bacteriology, 144, 247–57.

    PubMed  CAS  Google Scholar 

  • Cadmus, M.C., Rogovin, S.P., Burton, K.A., Pittsley, J.E., Knutson, C.A. and Jeanes, A. (1976) Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Canadian Journal of Microbiology, 22, 942–8.

    PubMed  CAS  Google Scholar 

  • Charley, R.C. and Bull, A.T. (1979) Bioaccumulation of silver by a multispecies community of bacteria. Archives of Microbiology, 123, 239–44.

    PubMed  CAS  Google Scholar 

  • Chen, C.-K., Tu, J. and Kuo, T.-T. (1989) A new protein subunit k for RNA polymerase from Xanthomonas campestris pv. oryzae. Journal of Biological Chemistry, 264, 4362–6.

    PubMed  CAS  Google Scholar 

  • Chen, L.-J. and Tseng, Y.-H. (1988) Cryptic plasmids of Xanthomonas campestris pv. oryzae. Plant Protein Bulletin, 30, 78–85.

    Google Scholar 

  • Choi, J.E., Matsuyama, N. and Wakimoto, S. (1981) Colony type variants of Xanthomonas campestris pv. oryzae and their serological properties. Annals of the Phytopathological Society of Japan, 47, 244–51.

    Google Scholar 

  • Civerolo, E.L. (1970) Comparative relationships between two Xanthomonas pruni bacteriophages and their bacterial host. Phytopathology, 60, 1385–8.

    Google Scholar 

  • Civerolo, E.L. (1973) Relationships of Xanthomonas pruni bacteriophages to bacterial spot disease in Prunus. Phytopathology, 63, 1279–84.

    Google Scholar 

  • Corey, R.R. and Starr, M.P. (1957) Colony types of X. phaseoli. Journal of Bacteriology, 74, 137–40.

    PubMed  CAS  Google Scholar 

  • Crawford, D.L. (1978) Lignocellulose decomposition by selected Streptomyces strains. Applied and Environmental Microbiology, 35, 1041–5.

    PubMed  CAS  Google Scholar 

  • Cullmann, W. and Dick, W. (1990) Heterogeneity of beta-lactamase production in Pseudomonas maltophilia, a nosocomial pathogen. Chemotherapy, 36, 117–26.

    PubMed  CAS  Google Scholar 

  • Dai, H. and Chiang, K.-S. (1990) Sequence alternation of indigenous plasmid in Xanthomonas campestris pv. citri in response to filamentous phage infection. Microbios, 63, 21–8.

    CAS  Google Scholar 

  • Dai, H., Chow, T.-Y., Liao, H.-J., Chen, Z.-Y. and Chiang, K.-S. (1988a) Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cfl6-vl into the Xanthomonas campestris pv. citri chromosome. Virology, 167, 613–20.

    PubMed  CAS  Google Scholar 

  • Dai, H., Liao, H.-J. and Chiang, K.-S. (1988b) Differential stability of filamentous phage genomes in Xanthomonas campestris pv. citri. Microbios, 56, 157–67.

    PubMed  CAS  Google Scholar 

  • Dai, H., Tsay, S.-H., Kuo, T.-T., Lin, Y.-H. and Wu, W.-C. (1987) Neolysogenization of Xanthomonas campestris pv. citri infected with filamentous phage Cfl6. Virology, 156, 313–20.

    PubMed  CAS  Google Scholar 

  • Dasarathy, Y., Stevens, J., Fanburg, B.L. and Lanzillo, J.J. (1989) A peptidyl dipeptidase-4 from Pseudomonas maltophilia: purification and properties. Archives of Biochemistry and Biophysics, 270, 255–66.

    PubMed  CAS  Google Scholar 

  • Dean-Raymond, D. and Alexander, M. (1977) Bacterial metabolism of quaternary ammonium compounds. Applied and Environmental Microbiology, 33, 1037–41.

    PubMed  CAS  Google Scholar 

  • Debette, J. and Prensier, G. (1989) Immunoelectron microscopic demonstration of an esterase on the outer membrane of Xanthomonas maltophilia. Applied and Environmental Microbiology, 55, 233–9.

    PubMed  CAS  Google Scholar 

  • Dekker, R.F.H. and Candy, G.P. (1979) The β-mannanases elaborated by the phytopathogen Xanthomonas campestris. Archives of Microbiology, 122, 297–9.

    CAS  Google Scholar 

  • Dianese, J.C. and Schaad, N.W. (1982) Isolation and characterization of inner and outer membranes of Xanthomonas campestris pv. campestris. Phytopathology, 72, 1284–9.

    CAS  Google Scholar 

  • dos Santos, R.M.D.B. and Dianese, J.C. (1985) Comparative membrane characterization of Xanthomonas campestris pv. cassavae and X. campestris pv. manihotis. Phytopathology, 75, 581–7.

    Google Scholar 

  • Dow, J.M., Clarke, B.R., Milligan, D.E., Tang, J.-L. and Daniels, M.J. (1990) Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Applied and Environmental Microbiology, 56, 2994–8.

    PubMed  CAS  Google Scholar 

  • Dufresne, J., Vézina, G. and Levesque, R.C. (1988) Molecular cloning and expression of the imipenem-hydrolyzing β-lactamase gene from Pseudomonas maltophilia in Escherichia coli. Review of Infectious Diseases, 10, 806–17.

    CAS  Google Scholar 

  • Dye, D.W., Starr, M.P. and Stolp, H. (1964) Taxonomic clarification of Xanthomonas vesicatoria based upon host specificity, bacteriophage sensitivity, and cultural characteristics. Phytopathologische Zeitschrift, 51, 394–407.

    Google Scholar 

  • Edmonds, C., Griffin, G.E. and Johnstone, A.P. (1989) Demonstration and partial characterization of ADP-ribosylation in Pseudomonas maltophilia. Biochemical Journal, 261, 113–18.

    PubMed  CAS  Google Scholar 

  • Feltham, R.K.A., Power, A.K., Pell, P.A. and Sneath, P.H.A. (1978) A simple method for storage of bacteria at −76°C Journal of Applied Bacteriology, 44, 313–16.

    PubMed  CAS  Google Scholar 

  • Fett, W.F., Dunn, M.F., Maher, G.T. and Maleeff, B.E. (1987) Bacteriocins and temperate phage of Xanthomonas campestris pv. glycines. Current Microbiology, 16, 137–44.

    CAS  Google Scholar 

  • Frank, J.F. and Somkuti, G.A. (1979) General properties of beta-galactosidase of Xanthomonas campestris. Applied and Environmental Microbiology, 38, 554–6.

    PubMed  CAS  Google Scholar 

  • Fu, J.-F. and Tseng, Y.-H. (1990) Construction of lactose-utilizing Xanthomonas campestris and production of xantham gum from whey. Applied and Environmental Microbiology, 56, 919–23.

    PubMed  CAS  Google Scholar 

  • Fukasawa, M., Noguchi, H., Okuda, T., Komatsu, T. and Yano, K. (1983) In vitro antibacterial activity of SM-1652, a new broad-spectrum cephalosporin with antipseudomonal activity. Antimicrobial Agents in Chemotherapy, 23, 195–200.

    CAS  Google Scholar 

  • Gaal, J.C. and Pearson, C.K. (1986) Covalent modification of proteins by ADP-ribosylation. TIBS, 11, 171–5.

    CAS  Google Scholar 

  • Gilardi, G.L. (1978) Identification of Pseudomonas and related bacteria, in Glucose Nonfermenting Gram Negative Bacteria in Clinical Microbiology (ed. G.L. Gilardi), CRC Press, Inc., Boca Raton, FL, pp. 25–38.

    Google Scholar 

  • Gitaitis, R.D., Sasser, M.J., Beaver, R.W., McInnes, T.B. and Stall, R.E. (1987) Pectolytic xanthomonads in mixed infections with Pseudomonas syringae pv. syringae, P. syringae pv. tomato, and Xanthomonas campestris pv. vesicatoria in tomato and pepper transplants. Phytopathology, 77, 611–15.

    CAS  Google Scholar 

  • Goto, M. (1965) Phage-typing of the causal bacteria of bacterial leaf blight (Xanthomonas oryzae) and bacterial leaf streak (X. translucens f. sp. oryzae) of rice in the tropics. Annals of the Phytopathological Society of Japan, 30, 253–7.

    Google Scholar 

  • Goto, M. (1972) Interrelationship between colony type, phage susceptibility and virulence in Xanthomonas oryzae. Journal of Applied Bacteriology, 35, 505–15.

    PubMed  CAS  Google Scholar 

  • Goto, M., Frank, P.G. and Ou, S.H. (1971) A study on the phage—bacteria relationship of Xanthomonas translucens f. sp. oryzicola (Fang et al.) Bradbury. Annals of the Phytopathological Society of Japan, 37, 249–58.

    Google Scholar 

  • Gough, C.L., Dow, J.M., Barber, C.E. and Daniels, M.J. (1988) Cloning of two endoglucanase genes of Xanthomonas campestris pv. campestris: analysis of the role of the major endoglucanase in pathogenesis. Molecular Plant—Microbe Interactions, 1, 275–81.

    Google Scholar 

  • Gough, C.L., Dow, J.M., Keen, J., Henrissat, B. and Daniels, M.J. (1990) Nucleotide sequence of the engXCA gene encoding the major endoglucanase of Xanthomonas campestris pv. campestris. Gene, 89, 53–9.

    PubMed  CAS  Google Scholar 

  • Haas, M.J. and Fett, W.F. (1987) Detection of plasmids in the plant pathogenic bacterium Xanthomonas campestris pathovar glycines, in Biotechnology in Agricultural Chemistry (eds H.M. LeBaron, R.O. Mumma, R.C. Honeycutt, J.H. Duesing, J.F. Philips and M.J. Haas), American Chemical Society, Washington DC., pp. 148–54.

    Google Scholar 

  • Hamon, Y., Véron, M. and Péron, Y. (1961) Contribution à l’étude des propriétés lysogènes et bactériocinogènes dans le genre Pseudomonas. Annales de l’Institute Pasteur, 101, 738–53.

    CAS  Google Scholar 

  • Hancock, R.E.W. (1991) Bacterial outer membranes: evolving concepts. ASM News, 57, 175–82.

    Google Scholar 

  • Hase, S. and Rietschel, E.T. (1976) Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. European Journal of Biochemistry, 63, 101–7.

    PubMed  CAS  Google Scholar 

  • Hayward, A.C. (1964) Bacteriophage sensitivity and biochemical group in Xanthomonas malvacearum. Journal of General Microbiology, 35, 287–98.

    PubMed  CAS  Google Scholar 

  • Hayward, A.C. (1977) Occurrence of glycoside hydrolases in plant pathogenic and related bacteria. Journal of Applied Bacteriology, 43, 407–11.

    CAS  Google Scholar 

  • Hildebrand, D.C. (1971) Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology, 61, 1430–6.

    Google Scholar 

  • Hirose, T., Okezaki, E., Kato, H., Ito, Y., Inoue, M. and Mitsuhashi, S. (1987) In vitro and in vivo activity of NY-198, a new difluorinated quinolone. Antimicrobial Agents in Chemotherapy, 31, 854–9.

    CAS  Google Scholar 

  • Hochster, R.M. and Madsen, N.B. (1959) The breakdown of adenosine phosphates in extracts of Xanthomonas phaseoli. Canadian Journal of Biochemistry and Physiology, 37, 639–49.

    PubMed  CAS  Google Scholar 

  • Hoshino, M., Isono, Y. and Sudo, T. (1989) Production of a new enzyme, nucleoside oxidase, by Pseudomonas maltophilia LB-86. Agricultural and Biological Chemistry, 53, 399–403.

    CAS  Google Scholar 

  • Huang, T.-C., Lin, F.-H. and Kuo, T.-T. (1975) Properties of membrane-bound adenosine triphosphatase from Xanthomonas oryzae. Botanical Bulletin Academia Sinica, 16, 36–44.

    CAS  Google Scholar 

  • Hugh, R. and Gilardi, G.L. (1980) Pseudomonas, in Manual of Clinical Microbiology, 3rd edn (eds A. Balows, W.J. Hausler, Jr and J.P. Truant), American Society for Microbiology, Washington DC., pp. 288–317.

    Google Scholar 

  • Hugh, R. and Leifson, E. (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology, 66, 24–6.

    PubMed  CAS  Google Scholar 

  • Iizuka, H. and Komagata, K. (1964) Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria. Journal of General and Applied Microbiology, 10, 207–21.

    Google Scholar 

  • Ikemoto, S., Suzuki, K., Kaneko, T. and Komagata, K. (1980) Characterization of strains of Pseudomonas maltophilia which do not require methionine. International Journal of Systemic Bacteriology, 30, 437–47.

    CAS  Google Scholar 

  • Ikotun, T. (1984a) Pectolytic enzymes produced by Xanthomonas campestris pathovar cassavae and their involvement in pathogenesis. Zeitschrift für Allgemeine Mikrobiologie, 24, 363–8.

    CAS  Google Scholar 

  • Ikotun, T. (1984b) Inducible production of pectin-methylesterase by Xanthomonas campestris pathovar manihotis. Zeitschrift für Allgemeine Mikrobiologie, 24, 139–42.

    CAS  Google Scholar 

  • Iverson, K.L., Bromel, M.C., Anderson, A.W. and Freeman, T.P. (1984) Bacterial symbionts in the sugar beet root maggot, Tetanops myopaeformis (von Röder). Applied and Environmental Microbiology, 47, 22–7.

    PubMed  CAS  Google Scholar 

  • Jenkins, C.L. and Starr, M.P. (1982a) The pigment of Xanthomonas populi is a nonbrominated aryl-heptaene belonging to xanthomonadin pigment group 11. Current Microbiology, 7, 195–8.

    CAS  Google Scholar 

  • Jenkins, C.L. and Starr, M.P. (1982b) The brominated aryl-polyene (xanthomonadin) pigments of Xanthomonas juglandis protect against photobiological damage. Current Microbiology, 7, 323–6.

    CAS  Google Scholar 

  • Jenkins, C.L. and Starr, M.P. (1985) Formation of halogenated aryl-polyene (xanthomonadin) pigments by the type and other yellow-pigmented strains of Xanthomonas maltophilia. Annales de l’Institut Pasteur Microbiologie, 136B, 257–64.

    PubMed  CAS  Google Scholar 

  • Jones, R.N., Fuchs, P.C., Barry, A.L., Ayers, L.W., Gerlach, E.H. and Gavan, T.L. (1986) Antimicrobial activity of Ro 15-8074, active metabolite of a new oral cephalosporin (Ro 15-8075), against 7,775 recent clinical isolates. Antimicrobial Agents in Chemotherapy, 30, 961–3.

    CAS  Google Scholar 

  • Juhnke, M.E. and Jardin, E.D. (1989) Selective medium for isolation of Xanthomonas maltophilia from soil and rhizosphere environments. Applied and Environmental Microbiology, 55, 747–50.

    PubMed  CAS  Google Scholar 

  • Kamiunten, H. and Wakimoto, S. (1979) Biological properties of the filamentous phages released from Xanthomonas oryzae isolates. Annals of the Phytopathological Society of Japan, 45, 174– 81.

    Google Scholar 

  • Kamiunten, H. and Wakimoto, S. (1980) Physico-chemical properties of filamentous phage Xf2 of Xanthomonas campestris pv. oryzae. Annals of the Phytopathological Society of Japan, 46, 315–21.

    Google Scholar 

  • Kamoun, S. and Kado, C.I. (1990) Phenotypic switching affecting Chemotaxis, xanthan production, and virulence in Xanthomonas campestris. Applied and Environmental Microbiology, 56, 3855–60.

    PubMed  CAS  Google Scholar 

  • Kato, K., Kawahara, K., Takahashi, T. and Kakinuma, A. (1980) Purification of a-amino acid ester hydrolase from Xanthomonas citri. Agricultural and Biological Chemistry, 44, 1069–74.

    CAS  Google Scholar 

  • Katznelson, H. (1955) The metabolism of phytopathogenic bacteria. I. Comparative studies on the metabolism of representative species. Journal of Bacteriology, 70, 469–75.

    PubMed  CAS  Google Scholar 

  • Katznelson, H. (1958) Metabolism of phytopathogenic bacteria. II. Metabolism of carbohydrates by cell-free extracts. Journal of Bacteriology, 75, 540–3.

    PubMed  CAS  Google Scholar 

  • Katznelson, H., Sutton, M.D. and Bayley, S.T. (1954) The use of bacteriophage of Xanthomonas phaseoli in detecting infection in beans, with observations on its growth and morphology. Canadian Journal of Microbiology, 1, 22–9.

    PubMed  CAS  Google Scholar 

  • Kawai, F. and Moriya, F. (1991) Bacterial assimilation of polytetramethylene glycol. Journal of Fermentation and Bioengineering, 71, 1–5.

    CAS  Google Scholar 

  • Kearney, B. and Staskawicz, B.J. (1990) Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. Journal of Bacteriology, 172, 143–8.

    PubMed  CAS  Google Scholar 

  • Kern, H.W. and Kirk, T.K. (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Applied and Environmental Microbiology, 53, 2242–6.

    PubMed  CAS  Google Scholar 

  • Kern, H.W., Webb, L.E. and Eggeling, L. (1984) Characterization of a ligninolytic bacterial isolate: taxonomic relatedness and oxidation of some lignin related compounds. Systematic Applied Microbiology, 5, 433–47.

    CAS  Google Scholar 

  • Kessler, C. and Manta, V. (1990) Specificity of restriction endonucleases and DNA modification methyltransferases — a review (Edition 3). Gene, 1–248.

    Google Scholar 

  • Khardori, N., Elting, L., Wong, E., Schable, B. and Bodey, G.P. (1990a) Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer. Review of Infectious Diseases, 12, 997–1003.

    CAS  Google Scholar 

  • Khardori, N., Reuben, A., Rosenbaum, B., Rolston, K. and Bodey, G.P. (1990b) In vitro susceptibility of Xanthomonas (Pseudomonas) maltophilia to newer antimicrobial agents. Antimicrobial Agents in Chemotherapy, 34, 1609–10.

    CAS  Google Scholar 

  • Kim, H.K., Orser, C., Lindow, S.E. and Sands, D.C. (1987) Xanthomonas campestris pv. translucens strains active in ice nucleation. Plant Disease, 71, 994–7.

    Google Scholar 

  • Knösel, D. (1975) Extracelluläre proteolytische Aktivität bei phytopathogenen Bakterien. Phytopathologische Zeitschrift, 82, 100–6.

    Google Scholar 

  • Knösel, D. and Garber, E.D. (1968) Separation of pectolytic and cellulolytic enzymes in culture filtrates of phytopathogenic bacterial species by starch gel zone electrophoresis. Phytopathologische Zeitschrift, 61, 292–8.

    Google Scholar 

  • Kobayashi, T., Ogasawara, A., Ito, S. and Saitoh, M. (1985) Purification and some properties of alkaline proteinase produced by Pseudomonas maltophilia. Agricultural and Biological Chemistry, 49, 693–8.

    CAS  Google Scholar 

  • Kuo, T.-T., Chao, Y.-S., Lin, Y.-H., Lin, B.-Y., Liu, L.-F. and Feng, T.-Y. (1987a) Integration of the DNA of filamentous bacteriophage Cflt into the chromosomal DNA of its host. Journal of Virology, 61, 60–5.

    PubMed  CAS  Google Scholar 

  • Kuo, T.-T., Huang, T.-C. and Chow, T.-Y. (1969) A filamentous bacteriophage from Xanthomonas oryzae. Virology, 39, 548–55.

    PubMed  CAS  Google Scholar 

  • Kuo, T.-T., Lin, Y.-H., Huang, C.-M., Chang, S.-F., Dai, H. and Feng, T.-Y. (1987b) The lysogenic cycle of the filamentous phage Cflt from Xanthomonas campestris pv. citri. Virology, 156, 305–12.

    PubMed  CAS  Google Scholar 

  • Labows, J.N., McGinley, K.J., Webster, G.F. and Leyden, J.J. (1980) Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography—mass spectrometry. Journal of Clinical Microbiology, 12, 521–6.

    PubMed  CAS  Google Scholar 

  • Lai, M., Panopoulos, N.J. and Shaffer, S. (1977a) Transmission of R plasmids among Xanthomonas spp. and other plant pathogenic bacteria. Phytopathology, 67, 1044–50.

    Google Scholar 

  • Lai, M., Shaffer, S. and Panopoulos, N.J. (1977b) Stability of plasmid-borne antibiotic resistance in Xanthomonas vesicatoria in infected tomato leaves. Phytopathology, 67, 1527–30.

    Google Scholar 

  • Lazo, G.R. and Gabriel, D.W. (1987) Conservation of plasmid DNA sequences and pathovar identification of strains of Xanthomonas campestris. Phytopathology, 77, 448–53.

    CAS  Google Scholar 

  • Leach, J.E., White, F.F., Rhoads, M.L. and Leung, H. (1990) A repetitive DNA sequence differentiates Xanthomonas campestris pv. oryzae from other pathovars of X. campestris. Molecular PlantMicrobe Interactions, 3, 238–46.

    CAS  Google Scholar 

  • Lechevalier, H. and Lechevalier, M.P. (1988) Chemotaxonomic use of lipids — an overview, in Microbial Lipids (eds C. Ratledge and S.G. Wilkinson), Academic Press, London, pp. 869–902.

    Google Scholar 

  • Leyns, F., Lambert, B., Joos, H. and Swings, J. (1990) Antifungal bacteria from different crops, in Biological Control of Soil-borne Plant Pathogens (ed. D. Hornby), CAB International, Wallingford, pp. 437–44.

    Google Scholar 

  • Liao, C.H. and Wells, J.M. (1987) Association of pectolytic strains of Xanthomonas campestris with soft rots of fruits and vegetables at retail markets. Phytopathology, 77, 418–22.

    CAS  Google Scholar 

  • Liao, Y.-D. and Kuo, T.-T. (1986) Loss of s-factor of RNA polymerase of Xanthomonas campestris pv. oryzae during phage Xp10 infection. Journal of Biological Chemistry, 261, 13714–19.

    PubMed  CAS  Google Scholar 

  • Liao, Y.-D., Tu, J. and Kuo, T.-T. (1987) Regulation of transcription of the Xp10 genome in bacteriophage-infected Xanthomonas campestris pv. oryzae. Journal of Virology, 61, 1695–9.

    PubMed  CAS  Google Scholar 

  • Liew, K.W. and Alvarez, A.M. (1981a) Phage typing and lysotype distribution of Xanthomonas campestris. Phytopathology, 71, 274–6.

    Google Scholar 

  • Liew, K.W. and Alvarez, A.M. (1981b) Biological and morphological characterization of Xanthomonas campestris bacteriophages. Phytopathology, 71, 269–73.

    Google Scholar 

  • Lin, B.-C., Day, H.-J., Chen, S.-J. and Chien, M.-C. (1979) Isolation and characterization of plasmids in Xanthomonas manihotis. Botanical Bulletin Academia Sinica, 20, 157–71.

    CAS  Google Scholar 

  • Lindow, S.E. (1983) The role of bacterial ice nucleation in frost injury to plants. Annual Review of Phytopathology, 21, 363–84.

    Google Scholar 

  • Liu, C.-Q., Lucas, R.J., Daly, J.M., Rickard, P.A.D. and Dunn, N.W. (1987) Cloning of Xanthomonas DNA that expresses D-xylose catabolic enzymes. Journal of Biotechnology, 6, 159–65.

    CAS  Google Scholar 

  • Lucas, R.J., Austen, R.A. and Dunn, N.W. (1987) Cloning of genes encoding endoglucanases from a cellulolytic xanthomonad. Journal of Biotechnology, 6, 83–90.

    CAS  Google Scholar 

  • MacDiarmid, J.A. and Burrell, D.H. (1986) Characterization of Pseudomonas maltophilia isolates from fleece rot. Applied and Environmental Microbiology, 51, 346–8.

    PubMed  CAS  Google Scholar 

  • Matsuda, K., Sasaki, K., Inoue, K., Kondo, H., Inoue, M. and Mitsuhashi, S. (1985) In vitro antibacterial activity of Sch 34343 and its stability to β-lactamases and renal dehydropeptidase 1. Antimicrobial Agents in Chemotherapy, 28, 684–8.

    CAS  Google Scholar 

  • Mett, H., Rosta, S., Schacher, B. and Frei, R. (1988) Outer membrane permeability and β-lactamase content in Pseudomonas maltophilia clinical isolates and laboratory mutants. Review of Infectious Diseases, 10, 765–9.

    CAS  Google Scholar 

  • Minsavage, G.V., Canteros, B.I. and Stall, R.E. (1990) Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology, 80, 719–23.

    CAS  Google Scholar 

  • Mori, N., Kasugai, T., Kitamoto, Y. and Ichikawa, Y. (1988) Purification and some properties of carnitine dehydrogenase from Xanthomonas translucens. Agricultural and Biological Chemistry, 52, 249–50.

    CAS  Google Scholar 

  • Narain, A. and Mohanty, A.P. (1983) Bacterial antagonists of some phytopathogenic fungi. Indian Journal of Mycology and Plant Pathology, 13, 28–31.

    Google Scholar 

  • Narushima, H., Omori, T. and Minoda, Y. (1982) Microbial transformation of α-pinene. European Journal of Applied Microbiology and Biotechnology, 16, 174–8.

    CAS  Google Scholar 

  • Neal, D.J. and Wilkinson, S.G. (1982) Lipopolysaccharides from Pseudomonas maltophilia. European Journal of Biochemistry, 128, 143–9.

    PubMed  CAS  Google Scholar 

  • Noble, R.C. and Parekh, M.C. (1987) In vitro comparison of ceftazidime, aztreonam, cefpirome, gentamicin, imipenem, enoxacin, and ticarcillin plus clavulanic acid against 108 strains of Pseudomonas maltophilia. Current Microbiology, 15, 177–9.

    CAS  Google Scholar 

  • Oda, K., Nakazima, T., Terashita, T., Suzuki, K.-i. and Murao, S. (1987) Purification and properties of an S-PI(Pepstatin Ac)-insensitive carboxyl proteinase from a Xanthomonas sp. bacterium. Agricultural and Biological Chemistry, 51, 3073–80.

    CAS  Google Scholar 

  • Odier, E., Janin, G. and Monties, B. (1981) Poplar lignin decomposition by Gram-negative aerobic bacteria. Applied and Environmental Microbiology, 41, 337–41.

    PubMed  CAS  Google Scholar 

  • Odier, E. and Monties, B. (1978) Biodégradation de la lignine de blé par Xanthomonas 23. Annals of Microbiology, 129A, 361–77.

    CAS  Google Scholar 

  • O’Donnell, E.D., Freimer, E.H., Gilardi, G.L. and Raeder, R. (1982) Comparative in vitro activities of N-formimidoyl thienamycin and moxalactam against nonfermentative aerobic Gram-negative rods. Antimicrobial Agents in Chemotherapy, 21, 673–5.

    Google Scholar 

  • Ohta, H., Konishi, J., Kato, Y. and Tsuchihashi, G.-I. (1987) Microbial reduction of 1,2-diketones to optically active α-hydroxyketones. Agricultural and Biological Chemistry, 51, 2421–7.

    CAS  Google Scholar 

  • Pandey, P.K. and Prasad, M. (1983) In vitro secretion of pectolytic enzymes by Xanthomonas campestris. Zentralblatt für Mikrobiologie, 138, 71–7.

    CAS  Google Scholar 

  • Patel, I.B. and Vaughn, R.H. (1973) Cellulolytic bacteria associated with sloughing spoilage of California ripe olives. Applied Microbiology, 25, 62–9.

    PubMed  CAS  Google Scholar 

  • Peros, J.P. (1988) Variability in colony type and pathogenicity of the causal agent of sugarcane gumming Xanthomonas campestris pv. vasculorum (Cobb) Dye. Journal of Plant Disease Protection, 95, 591–8.

    Google Scholar 

  • Prasad, M. and Bhushan, A. (1987) The influence of carbon nutrition on activation and activities of pectolytic enzyme in cultures of Xanthomonas campestris pv. vignicola. Zentralblatt für Mikrobiologie, 142, 631–8.

    CAS  Google Scholar 

  • Randhawa, P.S. and Civerolo, E.L. (1986) Interaction of Xanthomonas campestris pv. pruni with pruniphage and epiphytic bacteria on detached peach leaves. Phytopathology, 76, 549–53.

    Google Scholar 

  • Randhawa, P.S. and Civerolo, E.L. (1987) Indigenous plasmids in Xanthomonas campestris pv. pruni, in Plant Pathogenic Bacteria. Proceedings of the Sixth International Conference on Plant Pathogenic Bacteria, College Park, Maryland (eds E.L. Civerolo, A. Collmer, R.E. Davis and A.G. Gillaspie), Martinus Nijhoff Publishers, Dordrecht, pp. 465–9.

    Google Scholar 

  • Reddy, A.P.K. and Kauffman, H.E. (1977) Loss of virulence associated with aging of Xanthomonas oryzae cultures. Indian Phytopathology, 30, 106–11.

    Google Scholar 

  • Reddy, M.N., Stuteville, D.L. and Sorensen, E.L. (1969) Pectolytic activity by Xanthomonas alfalfae in vitro and in infected alfalfa plants. Phytopathology, 59, 887–8.

    CAS  Google Scholar 

  • Reddy, P.R., Raychaudhuri, S.P. and Rao, Y.P. (1977) Effect of bacteriophages on the infectivity of Xanthomonas oryzae, the incitant of bacterial leaf blight of rice. Journal of Plant Disease Protection, 84, 592–6.

    Google Scholar 

  • Rhodes, M.E. (1958) The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. Journal of General Microbiology, 18, 639–48.

    PubMed  CAS  Google Scholar 

  • Richert, N.D. and Ryan, R.J. (1977) Specific gonadotropin binding to Pseudomonas maltophilia. Proceedings of the National Academy of Sciences, U.S.A., 74, 878–82.

    CAS  Google Scholar 

  • Ridé, M. and Ridé, S. (1978) Xanthomonas populi (Ridé) comb. nov. (syn. Aplanobacter populi Ridé) spécifié, variabilité, et absence de relation avec Erwinia cancerogena. European Journal of Forest Pathology, 8, 310–33.

    Google Scholar 

  • Rosta, S. and Mett, H. (1989) Physiological studies of the regulation of β-lactamase expression in Pseudomonas maltophilia. Journal of Bacteriology, 171, 483–7.

    PubMed  CAS  Google Scholar 

  • Rye, A.J., Drozd, J.W., Jones, C.W. and Linton, J.D. (1988) Growth efficiency of Xanthomonas campestris in continuous culture. Journal of General Microbiology, 134, 1055–61.

    CAS  Google Scholar 

  • Saino, Y., Inoue, M. and Mitsuhashi, S. (1984) Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873. Antimicrobial Agents in Chemotherapy, 25, 362–5.

    CAS  Google Scholar 

  • Saino, Y., Kobayashi, F., Inoue, M. and Mitsuhashi, S. (1982) Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrobial Agents in Chemotherapy, 22, 564–70.

    CAS  Google Scholar 

  • Sakurai, I., Kawamura, Y., Koike, H., et al. (1990) Bacterial accumulation of metallic compounds. Applied and Environmental Microbiology, 56, 2580–3.

    PubMed  CAS  Google Scholar 

  • Schaad, N.W. and Stall, R.E. (1990). In Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2nd edn (ed. N.W. Schaad), APS Press, St Paul, Minnesota, pp. 81–94.

    Google Scholar 

  • Shetty, A.S. and Gaertner, F.H. (1978) Kynureninase-type enzymes from two strains of Xanthomonas pruni. FEMS Microbiology Letters, 3, 259–63.

    CAS  Google Scholar 

  • Sleesman, J.P. and Leben, C. (1978) Preserving phytopathogenic bacteria at −70°C or with silica gel. Plant Disease Reporter, 62, 910–13.

    Google Scholar 

  • Sleytr, U.B. and Messner, P. (1983) Crystalline surface layers on bacteria. Annual Review of Microbiology, 37, 311–39.

    PubMed  CAS  Google Scholar 

  • Smith, W.K. (1958) A survey of the production of pectic enzymes by plant pathogenic and other bacteria. Journal of General Microbiology, 18, 33–41.

    PubMed  CAS  Google Scholar 

  • Stall, R.E., Loschke, D.C. and Jones, J.B. (1986) Linkage of copper resistance and a virulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology, 76, 240–3.

    CAS  Google Scholar 

  • Stanier, R.Y., Palleroni, N.J. and Doudoroff, M. (1966) The aerobic pseudo-monads: a taxonomic study. Journal of General Microbiology, 43, 159–271.

    PubMed  CAS  Google Scholar 

  • Starr, M.P. (1946) The nutrition of phytopathogenic bacteria. I. Minimal nutritive requirements of the genus Xanthomonas. Journal of Bacteriology, 51, 131–43.

    CAS  Google Scholar 

  • Starr, M.P. (1981) The genus Xanthomonas, in The Prokaryotes, Vol. 1 (eds M.P. Starr, H. Stolp, H.G. Trüper, A. Balows and H.G. Schlegel), Springer Verlag, Berlin, pp. 742–63.

    Google Scholar 

  • Starr, M.P., Jenkins, C.L., Bussey, L.B. and Andrewes, A.G. (1977) Chemotaxonomic significance of the xanthomonadins, novel brominated arylpolyene pigments produced by bacteria of the genus Xanthomonas. Archives of Microbiology, 113, 1–9.

    PubMed  CAS  Google Scholar 

  • Starr, M.P. and Nasuno, S. (1967) Pectolytic activity of phytopathogenic xanthomonads. Journal of General Microbiology, 46, 425–33.

    CAS  Google Scholar 

  • Stephens, W.L. and Starr, M.P. (1963) Localization of carotenoid pigment in the cytoplasmic membrane of Xanthomonas juglandis. Journal of Bacteriology, 86, 1070–4.

    PubMed  CAS  Google Scholar 

  • Stevens, J., Fanburg, B.L. and Lanzillo, J.J. (1990) Determination of peptidyl dipeptidase activity in 24 bacterial species. Canadian Journal of Microbiology, 36, 56–9.

    PubMed  CAS  Google Scholar 

  • Strandberg, D.A., Jorgensen, J.H. and Drutz, D.J. (1983) Activities of aztreonam and new cephalosporins against infrequently isolated Gram-negative bacilli. Antimicrobial Agents in Chemotherapy, 24, 282–6.

    CAS  Google Scholar 

  • Sutherland, I.W. and Kennedy, F.D. (1986) Comparison of bacterial lipopolysaccharides by high-performance liquid chromatography. Applied and Environmental Microbiology, 52, 948–50.

    PubMed  CAS  Google Scholar 

  • Sutton, M.D., Katznelson, H. and Quadling, C. (1958) A bacteriophage that attacks numerous phytopathogenic Xanthomonas species. Canadian Journal of Microbiology, 4, 493–7.

    PubMed  CAS  Google Scholar 

  • Sutton, M.D. and Wallen, V.R. (1967) Phage types of Xanthomonas phaseoli isolated from beans. Canadian Journal of Botany, 45, 267–80.

    Google Scholar 

  • Tang, J.L., Gough, C.L., Barber, C.E., Dow, J.M. and Daniels, M.J. (1987) Molecular cloning of protease genes(s) from Xanthomonas campestris pv. campestris: expression in Escherichia coli and role in pathogenicity. Molecular and General Genetics, 210, 443–8.

    CAS  Google Scholar 

  • Thaveechai, N. and Schaad, N.W. (1986) Immunochemical characterization of a subspecies-specific antigenic determinant of a membrane protein extract of Xanthomonas campestris pv. campestris. Phytopathology, 76, 148–53.

    CAS  Google Scholar 

  • Tofte, R.W. and Crossley, K. (1980) Antimicrobial susceptibility of Acinetobacter calcoaceticus, Serratia marcescens, Pseudomonas fluorescens and Pseudomonas maltophilia to three novel cephalosporin-like antibiotics. Journal of Antimicrobial Chemotherapy, 6, 799–800.

    PubMed  CAS  Google Scholar 

  • Trojanowski, J., Haider, K. and Sundman, V. (1977) Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Archives of Microbiology, 114, 149–53.

    PubMed  CAS  Google Scholar 

  • Tu, J., Wang, H.-R., Chang, S.-F. et al. (1989) Transposable elements of Xanthomonas campestris pv. citri originating from indigenous plasmids. Molecular and General Genetics, 217, 505–10.

    CAS  Google Scholar 

  • Uematsu, T. (1980) Ecology of Bdellovibrio parasitic to rice bacterial leaf blight pathogen, Xanthomonas oryzae. Review of Plant Protection Research, 13, 12–26.

    Google Scholar 

  • Uematsu, T., Nagao, N. and Wakimoto, S. (1978) Ultrastructural aspects of host-parasite relationships between Xanthomonas oryzae and Bdellovibrio isolates. Annals of the Phytopathological Society of Japan, 44, 561–9.

    Google Scholar 

  • Van den Mooter, M. (1984) De Taxonomie van het Plantpathogene Bakteriën-Geslacht Xanthomonas Dowson 1939, PhD Thesis, Rijksuniversiteit, Gent.

    Google Scholar 

  • Van den Mooter, M. and Swings, J. (1990) Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. International Journal of Systemic Bacteriology, 40, 348–69.

    Google Scholar 

  • Volk, W.A. (1966) Cell wall lipopolysaccharides from Xanthomonas species. Journal of Bacteriology, 91, 39–42.

    PubMed  CAS  Google Scholar 

  • Volk, W.A. (1968) Quantitative assay of polysaccharide components obtained from cell wall lipopolysaccharides of Xanthomonas species. Journal of Bacteriology, 95, 980–2.

    PubMed  CAS  Google Scholar 

  • Volk, W.A., Salomonsky, N.L. and Hunt, D. (1972) Xanthomonas sinensis cell wall lipopolysaccharide. Journal of Biological Chemistry, 247, 3881–7.

    PubMed  CAS  Google Scholar 

  • von Riesen, V.L. (1980) Digestion of algin by Pseudomonas maltophilia and Pseudomonas putida. Applied and Environmental Microbiology, 39, 92–6.

    Google Scholar 

  • Wakimoto, S. (1960) Classification of strains of Xanthomonas oryzae on the basis of their susceptibility against bacteriophages. Annals of the Phytopathological Society of Japan, 25, 193–8.

    Google Scholar 

  • Wakimoto, S. and Kamiunten, H. (1978) Filamentous bacteriophages of Xanthomonas oryzae, in Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria, Angers, France, pp. 375–85.

    Google Scholar 

  • Walsh, P.M., Hass, M.J. and Somkuti, G.A. (1984) Genetic construction of lactose-utilizing Xanthomonas campestris. Applied and Environmental Microbiology, 47, 253–7.

    PubMed  CAS  Google Scholar 

  • Warren, G. and Wolber, P. (1991) Molecular aspects of microbial ice nucleation. Molecular Microbiology, 5, 239–43.

    PubMed  CAS  Google Scholar 

  • Weitzman, P.D.J. (1980) Citrate synthase and succinate thiokinase, in Classification and Identification, Academic Press, London, pp. 107–25.

    Google Scholar 

  • Whitaker, R.J., Byng, G.S., Gherna, R.L. and Jensen, R.A. (1981) Comparative allostery of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthetase as an indicator of taxonomic relatedness in pseudomonad genera. Journal of Bacteriology, 145, 752–9.

    PubMed  CAS  Google Scholar 

  • White, C.L., Melkjorsen, G.B. and Da Graça, J.V. (1985) Isolation of four bacteriophages from the mango bacterial black spot pathogen Xanthomonas campestris pv. mangiferaeindicae. Phytophylactica, 17, 11–14.

    Google Scholar 

  • Whitfield, C., Sutherland, I.W. and Cripps, R.E. (1982) Glucose metabolism in Xanthomonas campestris. Journal of General Microbiology, 128, 981–5.

    CAS  Google Scholar 

  • Wilkinson, S. G. (1967) The sensitivity of pseudomonads to ethylene-diaminetetra-acetic acid. Journal of General Microbiology, 47, 67–76.

    PubMed  CAS  Google Scholar 

  • Wilkinson, S.G. (1968) Studies on the cell walls of Pseudomonas species resistant to ethylenediaminetetra-acetic acid. Journal of General Microbiology, 54, 195–213.

    PubMed  CAS  Google Scholar 

  • Willems, A., Gillis, M., Kersters, K., Van den Broecke, L. and De Ley, J. (1987) Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. International Journal of Systemic Bacteriology, 37, 422–30.

    Google Scholar 

  • William, F. and Mahadevan, A. (1980) Degradaton of aromatic compounds by Xanthomonas species. Journal of Plant Disease Protection, 87, 738–44.

    CAS  Google Scholar 

  • Willoughby, L.G. (1983) A new kind of antagonistic association, between bacteria and aquatic fungi. Transactions of the British Mycology Society, 80, 91–7.

    Google Scholar 

  • Wilson, R.G. and Henderson, L.M. (1963) Tryptophan — niacin relationship in Xanthomonas pruni. Journal of Bacteriology, 85, 221–9.

    PubMed  CAS  Google Scholar 

  • Woodard, L.M., Bielkie, A.R., Eisses, J.F. and Ketchum, P.A. (1990) Occurrence of nitrate reductase and molybdopterin in Xanthomonas maltophilia. Applied and Environmental Microbiology, 56, 3766–71.

    PubMed  CAS  Google Scholar 

  • Yamazaki, E., Ishii, J., Sato, K. and Nakae, T. (1989) The barrier function of the outer membrane of Pseudomonas maltophilia in the diffusion of saccharides and β-lactam antibiotics. FEMS Microbiology Letters, 60, 85–8.

    CAS  Google Scholar 

  • Yang, P., Vauterin, L., Vancanneyt, M., Swings, J. and Kersters, K. (1993) Application of fatty acid methyl enters for the toxonomic analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 16, 47–71.

    CAS  Google Scholar 

  • Yang, S.-E., Lin, F.-H. and Kuo, T.-T. (1975) The utilization of exogenously supplied nucleotide by Xanthomonas oryzae. Botanical Bulletin Academia Sinica, 16, 61–5.

    CAS  Google Scholar 

  • Zagallo, A.C. and Wang, C.H. (1967) Comparative glucose catabolism of Xanthomonas species. Journal of Bacteriology, 93, 970–5.

    PubMed  CAS  Google Scholar 

  • Zechman, J.M. and Labows Jr, J.N. (1985) Volatiles of Pseudomonas aeruginosa and related species by automated headspace concentration — gas chromatography. Canadian Journal of Microbiology, 31, 232–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Swings, J., Vauterin, L., Kersters, K. (1993). The bacterium Xanthomonas . In: Swings, J.G., Civerolo, E.L. (eds) Xanthomonas. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1526-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1526-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4666-4

  • Online ISBN: 978-94-011-1526-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics