Advertisement

Automatic Quantification of Spine Parameters from X-ray Images by Means of Morphological Tools

  • F. Marqués
  • T. Megía
  • N. Joshi
  • A. Navarro-Quilis
Part of the Computational Imaging and Vision book series (CIVI, volume 2)

Abstract

This work presents an automatic technique for computing from an X-ray image the value of the set of parameters that characterizes the morphological structure of a human lumbar spine. To compute these parameters it is necessary to detect, in the X-ray image, each one of the vertebrae that forms the spine, as well as their relative location. Given the low quality of normal X-ray images, a direct detection cannot be performed. Thus, the proposed technique consists in five different steps: image simplification, detection of elements, decision, validation of objects and parameter computation. In order to be consistent, the validation step and the parameter computation rely on the same medical vertebra model.

Key words

Spine model Segmentation Geodesic distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. White III, M. M. Panjabi (1990), Clinical Biomechanics of the Spine, J. B. Lippincott Company, Philadelfia 1990.Google Scholar
  2. 2.
    J. Serra (1982), Image analysis and mathematical morphology, Academic Press, London, 1982.zbMATHGoogle Scholar
  3. 3.
    S. Sternberg (1986), “Grayscale morphology”, Computer Graphics and Image Processing, vol. 35, pp. 333–355, 1982.CrossRefGoogle Scholar
  4. 4.
    P. Salembier, J. Serra (1992), “Morphologicalmultiscale image segmentation”, Proc. of Visual Communications and Image Processing’92, Boston, MA, 1992.Google Scholar
  5. 5.
    J. Serra and P. Salembier (1993), “Connected operators and Pyramids”, Proc. of SPIE Image Algebra and Mathematical Morphology, San Diego, Vol. 2030, pp. 65–76, 1993.MathSciNetGoogle Scholar
  6. 6.
    S. Beucher (1990), Segmentation d’images et morphologie mathématique, PhD Thesis, Paris School of Mines, Paris, June 1990.Google Scholar
  7. 7.
    C. Lantuéjoul and F. Maisonneuve (1984), Geodesic methods in image analysis“, Pattern Recognition, vol. 17, pp. 177–187, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. M. Lin, M. M. Panjabi, T. R. Oxland (1993) “Functional Radiographs of Acute Thorax columbar Burst Fractures”, Spine, vol. 18, Num. 16 pp. 2431–2437,J. B. Lippincott Company 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • F. Marqués
    • 1
  • T. Megía
    • 1
  • N. Joshi
    • 2
  • A. Navarro-Quilis
    • 2
  1. 1.Dept. Teoria del Senyal i ComunicacionsETSETB, UPCBarcelonaSpain
  2. 2.Dept. Cirugia Ortopèdica i TraumatologiaHospital Vall d’HebronBarcelonaSpain

Personalised recommendations