Advertisement

Analyzing Bifurcations in the Kolmogorov Flow Equations

  • D. Armbruster
  • B. Nicolaenko
  • N. Smaoui
  • P. Chossat
Part of the NATO ASI Series book series (ASIC, volume 437)

Abstract

Simulations of forced 2-D Navier-Stokes equations are analyzed. The forcing is spatially periodic and temporally steady. Two regimes are analyzed: a bursting regime and a regime that exhibits discrete traveling waves. A Karhunen Loeve analysis is used to identify the structures in phase space that generate the PDE behavior. Their relationship to the invariant subspaces generated by the symmetry group is discussed.

Keywords

Symmetry Group Hopf Bifurcation Invariant Subspace Unstable Manifold Heteroclinic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Armbruster, R. Heiland, E. Kostelich, b. Nicolaenko: Phase-space analysis of bursting behavior in Kolmogorov flow, Physica D 58 392 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Armbruster, R. Heiland, E. Kostelich: KLTOOL a tool to analyze spatiotemporal complexity, preprint 1993Google Scholar
  3. [3]
    D. Armbruster, J. Guckenheimer, P.J. Holmes: Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math. 49, 676 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. Dellnitz, M. Golubitsky, M. Nicol: Symmetry of attractors and the Karhunen-Loeve decomposition, preprint 1993Google Scholar
  5. [5]
    C. Foias, B. Nicolaenko, in preparation 1994Google Scholar
  6. [6]
    M. Golubitsky, I. Stewart: Hopf bifurcations with dihedral group symmetry: coupled nonlinear oscillators. In: M. Golubitsky and J. Guckenheimer, eds: Multiparameter bifurcation theory, Contemp. Math. 56 131 (1986)CrossRefGoogle Scholar
  7. [7]
    M. Krupa: Bifurcations of relative equilibria, SIAM J. Math. Anal. 21 (6) 1453 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    I. Melbourne, P. Chossat, M. Golubitsky Heteroclinic cycles involving periodic solutions in mode interactions with O(2)-symmetry Proc. Roy. Soc. Edinb. 113A 315 (1989)MathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Kirby, D. Armbruster: Reconstructing phase space for PDE simulations, ZAMP 43.999 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J.L. Lumley,in “Atmospheric Turbulence and Radio Wave Propagation”, eds. A.M. Yaglom, V.I. Tatarski (Nauka, Moscow), 166 (1967)Google Scholar
  11. [11]
    B. Nicolaenko, Z.S. She: Symmetry-breaking homoclinic chaos in the Kolmogorov flows, in: Nonlinear World, Int. workshop on nonlinear and turbulent processes in physics, Kiev 1989, eds. V.G. Baryakhtar et al., 602 (1990)Google Scholar
  12. Z.S. She, B. Nicolaenko: Temporal intermittency and turbulence production in the Kolmogorov flow, In: “Topological Fluid Mechanics” Eds. H.K. Moffatt, Cambridge University Press, 256 (1990)Google Scholar
  13. B. Nicolaenko, Z.S. She: Symmetry breaking homoclinic chaos and vortic-ity bursts in periodic Navier-Stokes flows, Eur. J. Mech. B/Fluids 10(2), 67 (1991)MathSciNetzbMATHGoogle Scholar
  14. [12]
    L. Sirovich: Turbulence and the dynamics of coherent structures, Parts I -III, Quarterly of Appl. Math. Vol XLV (3), 561 (1987)MathSciNetGoogle Scholar
  15. [13]
    N. Smaoui, D. Armbruster, P. Chossat, B. Nicolaenko: in preparation 1994Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • D. Armbruster
    • 1
  • B. Nicolaenko
    • 1
  • N. Smaoui
    • 1
  • P. Chossat
    • 2
  1. 1.Department of MathematicsArizona State UniversityUSA
  2. 2.Institut Non-Linéaire de NiceCNRS-Université de Nice Sophia-AntipolisUSA

Personalised recommendations