Response of bubbles to ultrasonic radiation pressure: Dynamics in low gravity and shape oscillations

  • Philip L. Marston
  • Eugene H. Trinh
  • Jon Depew
  • Thomas J. Asaki
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 23)

Abstract

A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on the Space Shuttle on USML-1 where it was used in NASA’s Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb’s equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.

Key words

bubbles shape oscillations radiation pressure low gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. G. Blake, J. Acoust. Soc. Am. 21, 551 (1949).ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Eller, J. Acoust. Soc. Am. 43, 170 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    R. G. Holt and L. A. Crum, J. Acoust. Soc. Am. 91, 1924 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    H. Lamb, Hydrodynamics (Dover, New York, 1945).Google Scholar
  5. 5.
    P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980); erratum, 71, 511 (1982).ADSMATHCrossRefGoogle Scholar
  6. 6.
    P. L. Marston, S. E. LoPorto, and G. L. Pullen, J. Acoust. Soc. Am. 69, 1499 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280 (1979).CrossRefGoogle Scholar
  8. 7a.
    P. L. Marston and R. E. Apfel,J. Acoust. Soc. Am. 67, 27 (1980).ADSCrossRefGoogle Scholar
  9. 8.
    T. J. Asaki, P. L. Marston, and E. H. Trinh, J. Acoust. Soc. Am. 93, 706 (1993).ADSCrossRefGoogle Scholar
  10. 9.
    C. A. Miller and L. E. Scriven, J. Fluid Mech. 32, 417 (1968).ADSMATHCrossRefGoogle Scholar
  11. 10.
    L. A. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).ADSCrossRefGoogle Scholar
  12. 11.
    A. Prosperetti, Appl. Sci. Res. 38, 145 (1982).MathSciNetMATHCrossRefGoogle Scholar
  13. 12.
    M. S. Longuet-Higgins, J. Fluid Mech. 201, 543 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 13.
    M. C. Lee, I. Feng, D. D. Elleman, T. G. Wang, and A. T. Young, J. Vac. Sci. Technol. 20, 1123 (1982).ADSCrossRefGoogle Scholar
  15. 14.
    N. A. Pelekasis, J. A. Tsamopoulos, and G. D. Manolis, J. Fluid Mech. 230, 541 (1991).ADSMATHCrossRefGoogle Scholar
  16. 15.
    C. P. Lee and T. G. Wang, J. Acoust. Soc. Am. 93, 1637 (1993).ADSCrossRefGoogle Scholar
  17. 16.
    E. H. Trinh, P. L. Marston, and J. L. Robey, J. Colloid Interface Sci. 124, 95 (1988).ADSCrossRefGoogle Scholar
  18. 17.
    E. Trinh and T. G. Wang, J. Fluid Mech. 122, 315 (1982).ADSCrossRefGoogle Scholar
  19. 18.
    P. L. Marston and S. G. Goosby, Phys. Fluids 28, 1233 (1985).ADSCrossRefGoogle Scholar
  20. 19.
    T. J. Asaki, P. L. Marston, and E. H. Trinh, in Advances in Nonlinear Acoustics, edited by H. Hobaek (World Scientific, Singapore, 1993), pp. 424–429.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Philip L. Marston
    • 1
  • Eugene H. Trinh
    • 2
  • Jon Depew
    • 2
  • Thomas J. Asaki
    • 1
  1. 1.Department of PhysicsWashington State UniversityPullmanUSA
  2. 2.MS 183-401, Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations