The Effect of Hydrostatic Pressure on Protein Crystals Investigated by Molecular Simulation

  • Darrin M. York
  • Tom A. Darden
  • Lee G. Pedersen
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 27)


The effect of hydrostatic pressure on protein crystal structures is examined with molecular simulation. Four 1 ns molecular dynamics simulations of bovine pancreatic trypsin inhibitor in a crystal unit cell have been performed at solvent densities corresponding to 32%, 36%, 40%, and 44% solvent. Electrostatic interactions in the crystalline environment were treated rigorously with Ewald sums. The effect of varying the solvent density at constant unit cell volume is analyzed with respect to changes in protein structure, atomic fluctuations, solvation, and crystal packing. The results indicate the solvent density range 36–40% gives excellent overall agreement with high resolution crystallographic data (~O.3Å rms backbone deviation). The low density (32%) and high density (44%) simulations have larger deviations.

Key words

Crystal Ewald molecular dynamics pressure protein simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Matthews: in H. Neurath and R. Hill, Eds., The Proteins, 3rd ed. ,Vol. 3 ,Academic Press, New York, p. 403 (1977).Google Scholar
  2. 2.
    T. Creighton: in Proteins, 2nd ed. ,W. H. Freeman & Co., New York (1993).Google Scholar
  3. 3.
    A. Bax: Ann. Rev. Biochem. 58, 223 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Weber: in R. van Eldik and J. Jonas, Eds.: High Pressure Chemistry and Biochemistry ,D. Reidel Publishing Company, Boston (1986).Google Scholar
  5. 5.
    P. Wong and K. Heremans: Biochim. Biophys. Acta. 956, 1 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Carrier, H. Mantsch, and P. Wong: Biopolymers 29, 837 (1990).CrossRefGoogle Scholar
  7. 7.
    C. Kundrot and F. Richards: J. Mol. Biol. 193, 157 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Kundrot and F. Richards: J. Mol.. Biol. 200, 401 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    W. F. van Gunsteren and M. Karplus: Biochemistry 21, 2259 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    W. F. van Gunsteren and H. J. C. Berendsen: J. Mol.. Biol. 176, 559 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Krüger, W. Strassburger, A. Woller, and W. F. van Gunsteren: Eur. Biophys. J. 13, 77 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    D. York, T. Darden, L. Pedersen, and M. Anderson: Biochemistry 32, 1443 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Deisenhofer and W. Steigmann: Acta Crystallogr. B 31, 238 (1975).CrossRefGoogle Scholar
  14. 14.
    V. Daggett and M. Levitt: Ann. Rev. Biophys. Biomol. Struct. 22, 353 (1993).CrossRefGoogle Scholar
  15. 15.
    D. Kitchen, L. Reed, and R. Levy: Biochemistry 31, 10083 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Brunne and W. van Gunsteren: FEBS Lett. 323, 215 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Wlodawer, J. Walter, R. Huber, and L. Sjölin: J. Mol.. Biol. 180, 301 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    S. J. Weiner and P. A. Kollman: J. Comp. Chem. 7, 230 (1986).CrossRefGoogle Scholar
  19. 19.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. Klein: J. Chem. Phys. 79, 926 (1983).CrossRefGoogle Scholar
  20. 20.
    T. Lybrand, J. McCammon, and G. Wipff: Proc. Natl. Acad. Sci. USA 83, 833 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Ryckaert, G. Ciccotti, and H. Berendsen: J. Comput. Phys. 23, 327 (1977).CrossRefGoogle Scholar
  22. 22.
    T. Darden, D. York, and L. Pedersen: J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  23. 23.
    D. York, T. Darden, and L. Pedersen: J. Chem. Phys. 99 8345 (1993).CrossRefGoogle Scholar
  24. 24.
    A. D. McLachlan: J. Mol.. Biol. 128, 49 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Kitson, F. Avbelj, J. Moult, D. Nguyen, J. Mertz, D. Hadzi, and A. Hagler: Proc. Natl. Acad. Sci. USA 90, 8920 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    W. Kabsch and C. Sander: Biopolymers 22, 2577 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Karplus and G. Petsko: Nature 347, 631 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Petsko and D. Ringe: Ann. Rev. Biophys. Bioeng. 13, 331 (1984).CrossRefGoogle Scholar
  29. 29.
    M. Smythe, S. Huston, and G. Marshall: J. Am. Chem. Soc. 115, 11594 (1993).CrossRefGoogle Scholar
  30. 30.
    A. Wlodawer, J. Deisenhofer, and R. Huber: J. Mol.. Biol. 193, 145 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Berndt, P. Güntert, L. Orbons, and K. Wüthrich: J. Mol. Biol. 227, 151 (1992).CrossRefGoogle Scholar
  32. 32.
    D. Housset, K-S. Kim, J. Fuchs, C. Woodward, and A. Wlodawer: J. Mol. Biol. 220, 757 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Darrin M. York
    • 1
    • 2
  • Tom A. Darden
    • 4
  • Lee G. Pedersen
    • 3
    • 4
  1. 1.Department of ChemistryDuke UniversityDurhamUSA
  2. 2.a Division of MCNCNorth Carolina Supercomputing CenterRTPUSA
  3. 3.Department of ChemistryUniversity of North CarolinaChapel HillUSA
  4. 4.National Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations