Hydropyrolysis: Fundamentals, Two-Stage Processing and PDU Operation

  • M. J. Roberts
  • C. E. Snape
  • S. C. Mitchell
Part of the NATO ASI Series book series (ASIC, volume 455)


Fundamental aspects of hydropyrolysis in terms of how both reaction conditions and reactor geometry affect product yields and compositions are reviewed, followed by a description of the pressurised fluidised-bed hydroretorting (PFH) process developed at the Institute of Gas Technology (IGT) as an example of an oil shale hydroretorting process that has been successfully operated on a PDU scale. The use of low temperatures and long solids residence times in well-swept fixed-and fluidised-bed reactors are essential to achieve high selectivity to liquid products in hydropyrolysis. For oil shales, hydrogen pressures of ca 5–10 MPa are generally sufficient to approach the maximum ecomomical oil yield compared to those of over 30 MPa for coals, unless suitable dispersed catalysts are used. Hydropyrolysis oils generally more aromatic with lower heteroatom contents with increasing hydrogen pressure. The PFH process developed at IGT has been scaled-up from a 100 g batch unit to a 100 kg hr-1 semi-continous PDU. To assess the potential oil yields from PFH, a hydroretorting assay unit was used extensively . Compared to Western U.S. (Eocene, Type I kerogen) oil shales, which give high oil yields in conventional retorting processes, Eastern Devonian shales (Type II kerogens) have considerably lower atomic H/C ratios which severely restricts the attainable oil yields. In hydretorting at 538°C and 6.9 MPa, the oil yields from Eastern U.S. shales were substantially improved and usually doubled using the PFH process.


Hydrogen Pressure Bituminous Coal Carbon Conversion Hydrous Titanium Oxide Coal Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Gavalas, Coal Pyrolysis, Elsevier (1985).Google Scholar
  2. 2.
    S.K. Chakrabartty and M.P. du Plessis, Modern Coal Pyrolysis; Information Series 95, Alberta Research Council, Canada (1985) and references therein.Google Scholar
  3. 3.
    S. Furfari, IEA Report No. ICTIS/TR20 (1983) and references therein.Google Scholar
  4. 4.
    E. Ekinci, A.E. Putun, M. Citiroglu, C.J. Lafferty and C.E. Snape, Proc. 1991 Int. Conf. on Coal Science (Newcastle). 520 and M. Citiroglu, Ph.D thesis, Istanbul Technical University (1993).Google Scholar
  5. 5.
    M.J. Roberts, D. Rue and F. Lau, Fuel, 1992, 71, 1433.CrossRefGoogle Scholar
  6. 6.
    G. Fynes, W.R. Ladner and J.O.H. Newman, Fuel. 1980, 59, 397.CrossRefGoogle Scholar
  7. 7.
    C. Bolton, C. Riemer, C.E. Snape, R.J. O’Brien and R. Kandiyoti, Fuel. 1987, 66, 1413.CrossRefGoogle Scholar
  8. 8.
    H. Juntgen, Fuel. 1984, 63, 731 and references therein.CrossRefGoogle Scholar
  9. 9.
    E.M. Suuberg, W.A. Peters and J.B. Howard, Ind. Eng. Chem. Process Pes. Dev., 1978, 17, 37.CrossRefGoogle Scholar
  10. 10.
    P. Arendt and K.-H. van Heek, Fuel, 1981, 60, 779.CrossRefGoogle Scholar
  11. 11.
    J.B. Howard in Chemistry of Coal Utilisation 2nd. Supp. Vol.. (Ed. M.A. Elliott), J.Wiley, 1981, p 655.Google Scholar
  12. 12.
    P.T. Fallon, B. Bhatt and M. Steinberg, Fuel Process. Technol., 1980, 3, 155.CrossRefGoogle Scholar
  13. 13.
    C.E. Snape, W.R. Ladner and K.D. Bartle, Fuel, 1985, 64, 1394.CrossRefGoogle Scholar
  14. 14.
    C.E. Snape, C.J. Lafferty, S. Mitchell, F. Donald and C. McArthur, G. Eglinton, N. Robinson and R. Collier, Final report on EC Contract No. EN3V -0048 -UK (H), October 1991.Google Scholar
  15. 15.
    N. Robinson, G. Eglinton, C.J. Lafferty and C.E. Snape, Fuel. 1991, 70, 249.CrossRefGoogle Scholar
  16. 16.
    R.E. Wood and W.H. Wiser, Ind. Eng. Chem. Proc. Pes. Dev., 1976, 15(1), 144.CrossRefGoogle Scholar
  17. 17.
    J.R. Kershaw, G. Barass and D. Grady, Fuel Process Technol., 1980, 3, 115.CrossRefGoogle Scholar
  18. 18.
    C. Bolton, C. Riemer, C.E. Snape, F.J. Derbyshire and M.T. Terrer, Fuel. 1988, 67, 901.CrossRefGoogle Scholar
  19. 19a.
    C.E. Snape, C. Bolton, R.G. Dosch and H.P. Stephens, Energy & Fuels. 1989,3, 421CrossRefGoogle Scholar
  20. 19b.
    C.E. Snape, C. Bolton, R.G. Dosch and H.P. Stephens Am. Chem. Soc. Div. Fuel Chem., 1988, 33(3), 251.Google Scholar
  21. 20.
    D. Garg and E.N. Givens, Prepr. Am. Chem. Soc. Div. Fuel Chem., 1983, 28(5), 200.Google Scholar
  22. 21.
    J.A. Ruether, J.A. Mima, R.M. Kornosky and B.C. Ha, Energy & Fuels. 1987, 1(2), 198.CrossRefGoogle Scholar
  23. 22.
    C.W. Curtis and J.L. Pelligrino, Energy & Fuels. 1989, 3(2), 160.CrossRefGoogle Scholar
  24. 23.
    C.E. Snape, C.J. Lafferty, H.P. Stephens, R.G. Dosch and E. Klavetter, Fuel. 1991, 70, 393.CrossRefGoogle Scholar
  25. 24.
    D.K. Sharma, A. Sulimma and K.H. van Heek, Fusl, 1986, 65, 1571.Google Scholar
  26. 25.
    C. Braekman-Danheux, R. Cypres, A. Fontana, P. Laurent and M. Van Hoegaerden, Fuel, 1992, 71, 251.CrossRefGoogle Scholar
  27. 26.
    C. Bolton, C.E. Snape and H.P. Stephens, Fuel,1989, 68, 161 and references therein.CrossRefGoogle Scholar
  28. 27.
    S.D. Carter, M. Citiroglu, J. Gallacher, C.E. Snape, S.C. Mitchell and C.J. Lafferty, Proc. 1992 Eastern US Oil Shale Symp., Univ. of Kentucky and Fuel. 1994, 73, 1455.Google Scholar
  29. 28.
    D.V. Punwani, Presented at 12th Energy Technology Conference & Exposition, Washington, D.C., 24–26 March, 1985.Google Scholar
  30. 29.
    . S.A. Weil et al, Presented at Synthetic Fuels from Oil Shale II, Nashville,Tennessee, 26–29 October 1981.Google Scholar
  31. 30.
    M.J. Roberts et al, Proc. 1989 Eastern US Oil Shale Symp., pp 487–498, Univ. of Kentucky.Google Scholar
  32. 31.
    F.S. Lau and D.V. Punwani, Presented at US DoE Oil Shale Contractors meeting, 19–21 My 1988.Google Scholar
  33. 32.
    M.J. Roberts et al, Final Report on US DoE Contracts DE-AC21-87MC11089 (4 volumes) and Reports on US DoE Contract DOE/MC/11089-47 to 50 (March 1992).Google Scholar
  34. 33.
    M.J. Roberts et al, Final Report on US DoE Contract DOE/MC/11089-68 (June 1991-May 1992).Google Scholar
  35. 34.
    M.J. Roberts et al, Final Report on US DoE Contract DOE/MC/11089-79 (June 1992-January 1993).Google Scholar
  36. 35.
    P.A. Lynch et al, Prepr. Am. Chem. Soc., Div. Pet. Chem., 1984, 29(1), 71.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • M. J. Roberts
    • 1
  • C. E. Snape
    • 2
  • S. C. Mitchell
    • 2
  1. 1.Institute of Gas TechnologyChicagoUSA
  2. 2.Dept. of Pure & Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations