Advertisement

Ethylene biosynthesis and action: a case of conservation

  • Thomas I. Zarembinski
  • Athanasios Theologis
Chapter

Abstract

Ethylene is one of the simplest organic molecules with biological activity. At concentrations as low as 0.1 ppm in air, it has been shown to have dramatic effects on plant growth and development [1]. Neljubov [78] was the first to show that ethylene has three major effects in etiolated pea seedlings called the triple response: (1) diageotropic growth, (2) thickening of stem and inhibition of stem elongation, and (3) exaggeration of apical hook curvature. Since then, numerous ethylene effects have been described in light-grown plants such as sex determination in curcurbits, fruit ripening in climacteric fruits, epinastic curvature, flower senescence, and root initiation [1]. Interestingly, ethylene has also been shown to have opposite effects in some plants; for instance, it inhibits stem elongation in most dicots, whereas in some aquatic dicots and rice, it stimulates growth [1, 45, 72].

Key words

aminotransferase dioxygenase ethylene kinase cascade raf kinase two-component system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles FB, Morgan PW, Saltveit ME, Jr: Ethylene in Plant Biology. Academic Press, New York (1992).Google Scholar
  2. 2.
    Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl Goy P, Luntz T, Ward E, Ryals J: Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA 90: 7327–7331 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    Arico B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S: Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86: 6671–6675 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    Ayub RA, Rombaldi C, Petitprez M, Latche A, Pech JC, Lelievre JM: Biochemical and immunocytological characterization of ACC oxidase in transgenic grape cells. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 98–99. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).Google Scholar
  5. 5.
    Bailey BA, Avni A, Li N, Mattoo AK: Nucleotide sequence of the Nicotiana tabacum cv Xanthi gene encoding 1-aminocyclopropane-l-carboxylate synthase. Plant Physiol 100: 1615–1616 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    Bent AF, Innes RW, Ecker JR, Staskawicz BJ: Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Psedomonas and Xanthomonas pathogens. Mol Plant-Microbe Interact 5: 372–378 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    Bleecker AB, Estelle MA, Somerville G, Kende H: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    Botella JR, Arteca JM, Schlagnhaufer CD, Arteca RN: Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane-l-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid. Plant Mol Biol 20: 425–436 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Botella JR, Schlagnhaufer CD, Arteca JM, Arteca RN: Identification of two new members of the 1-amino-cyclopropane-1-carboxylate synthase-encoding multigene family in mung bean. Gene 123: 249–253 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    Botella JR, Schlagnhaufer CD, Arteca RN, Phillips AT: Identification and characterization of three putative genes for 1-aminocyclopropane-l-carboxylate synthase from etiolated mung bean hypocotyl segments. Plant Mol Biol 18: 793–797 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    Brand AH, Perrimon N: Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Devel 8: 629–639 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    Broglie KE, Biddle P, Cressman R, Broglie R: Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1: 599–607 (1989).PubMedGoogle Scholar
  13. 13.
    Burg SP, Burg EA: Molecular requirements for the biological activity of ethylene. Plant Physiol 42: 144–152 (1967).PubMedCrossRefGoogle Scholar
  14. 14.
    Callahan AM, Morgens PH, Wright P, Nichols Jr KE: Comparison of Pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars. Plant Physiol 100: 482–488 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    Calogeraki L, Barnier JV, Eychene A, Felder MP, Calothy G, Marx M: Genomic organization and nucleotide sequence of the coding region of the chicken c-Rmil (B-raf-l) proto-oncogene. Biochem Biophys Res Comm 193: 1324–1331 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    Chang C, Kwok SF, Bleecker AB, Meyerowitz EM: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539–544 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    Coque JJ, Martin JF, Calzada JG, Liras P: The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol 5: 1125–1133(1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Deikman J, Fischer RL: Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7: 3315–3320(1988).PubMedGoogle Scholar
  19. 19.
    Dickson B, Sprenger F, Morrison D, Hafen E: Raf functions downstream of Rasl in the Sevenless signal transduction pathway. Nature 360: 600–603 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    Dong JG, Fernandez-Maculet JC, Yang SF: Purification and characterization of 1-aminocyclopropane-l-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89: 9789–9793 (1992a).PubMedCrossRefGoogle Scholar
  21. 21.
    Dong JG, Kim WT, Yip WK, Thompson GA, Li L, Bennett AB, Yang SF: Cloning of a cDNA encoding 1-aminocyclopropane-l-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38–45 (1991).CrossRefGoogle Scholar
  22. 22.
    Dong JG, Olson D, Silverstone A, Yang S-F: Sequence of a cDNA Coding for a 1-aminocyclopropane-l-carboxylate oxidase homolog from apple fruit. Plant Physiol 98: 1530–1531 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    Ecker JR, Theologis A: Ethylene: a unique signalling molecule. In: Somerville C, Meyerowitz E (eds), Arabidopsis 485–521. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1994).Google Scholar
  24. 24.
    Eyal Y, Meller Y, Lev-Yadun S, Fluhr R: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4: 225–234 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    Fabian JR, Morrison DK, Daar IO: Requirement for raf and map kinase function during the meiotic maturation of Xenopus oocytes. J Cell Biol 122: 645–652 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    Fernandez-Maculet JC, Dong JG, Yang SF: Activation of 1-aminocyclopropane-l-carboxylate oxidase by carbon dioxide. Biochem Biophys Res Comm 193: 1168–1173 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    Fray RG, Grierson D: Molecular genetics of tomato fruit ripening. Trends Genet 9: 438–443 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    Fujino DW, Burger DW, Bradford KJ: Ineffectiveness of ethylene biosynthetic and action inhibitors in phenotypically reverting the epinastic mutant of tomato (Lycopersicon esculentum Mill.). J Plant Growth Regul 8: 53–61 (1989).CrossRefGoogle Scholar
  29. 29.
    Fujino DW, Burger DW, Yang S-F, Bradford KJ: Characterization of an ethylene overproducing mutant of tomato (Lycopersicon esculentum Mill. Cultivar VFN8). Plant Physiol 88: 774–779 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    Giovannoni JJ, DellaPenna D, Lashbrook CC, Bennett AB, Fischer RL: Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit. In: Bennett AB, O’Neill SD (eds) Horticultural Biotechnology, pp. 217–227. Wiley-Liss, New York (1990).Google Scholar
  31. 31.
    Guo L, Arteca RN, Phillips AT, Liu Y: Purification and characterization of 1-aminocyclopropane-l-carboxylate N-malonyltranferase from etiolated mung bean hypocotyls. Plant Physiol 100: 2041–2045 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    Gupta Williams N, Roberts TM: Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev 13: 105–116 (1994).CrossRefGoogle Scholar
  33. 33.
    Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513–523 (1990).PubMedGoogle Scholar
  34. 34.
    Hamilton AJ, Bouzawen M, Grierson D: Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88: 7434–7437 (1991).PubMedCrossRefGoogle Scholar
  35. 35.
    Hamilton AJ, Lycett GW, Grierson D: Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287 (1990).CrossRefGoogle Scholar
  36. 36.
    Han M, Golden A, Han Y, Sternberg PW: C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363: 133–140 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    Hargrove JL, Scoble HA, Mathews WR, Baumstark BR, Biemann K: The structure of tyrosine aminotransferase: evidence for domains involved in catalysis and enzyme turnover. J Biol Chem 264: 45–53 (1989).PubMedGoogle Scholar
  38. 38.
    Hedden P: 2-Oxoglutarate-dependent dioxygenases in plants: mechanism and function. Biochem Soc Trans 20: 373–376 (1992).PubMedGoogle Scholar
  39. 39.
    Holdsworth MJ, Schuch W, Grierson D: Nucleotide sequence of an ethylene-related gene from tomato. Nucl Acids Res 15: 10600 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    Hrabak EM, Willis DK: The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bact 174: 3011–3020 (1992).PubMedGoogle Scholar
  41. 41.
    Huang P-L, Parks JE, Rottmann WH, Theologis A: Two genes encoding 1-aminocyclopropane-l-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar, but differentially expressed. Proc Natl Acad Sci USA 88: 7021–7025 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    Hughes DA: Histidine kinases hog the limelight. Nature 369: 187–188 (1994).PubMedCrossRefGoogle Scholar
  43. 43.
    Iuchi S: Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem 268: 23972–23980 (1993).PubMedGoogle Scholar
  44. 44.
    Iuchi S, Matsuda Z, Fujiwara T, Lin EC: The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 4: 715–727 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson MB: Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36: 145–174 (1985).CrossRefGoogle Scholar
  46. 46.
    Kende H: Enzymes of ethylene biosynthesis. Plant Physiol 91: 1–4 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    Kende H: Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307 (1993).CrossRefGoogle Scholar
  48. 48.
    Kieber JJ, Ecker JR: Ethylene gas: it’s not just for ripening any more! Trends Genet 9: 356–362 (1993).PubMedCrossRefGoogle Scholar
  49. 49.
    Kieber J J, Rothenberg M, Roman G, Feldmann KA, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    Kim WT, Silverstone A, Yip WK, Dong JG, Yang SF: Induction of 1-aminocyclopropane-l-carboxylate synthase mRNA by auxin in mung bean hypocotyls and cultured apple shoots. Plant Physiol 98: 465–471 (1992).PubMedCrossRefGoogle Scholar
  51. 51.
    Kim WT, Yang SF: Turnover of 1-aminocyclopropane- 1-carboxylic acid synthase protein in wounded tomato fruit tissue. Plant Physiol 100: 1126–1131 (1992).PubMedCrossRefGoogle Scholar
  52. 52.
    Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM: Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187–1193(1991).PubMedGoogle Scholar
  53. 53.
    Kock M, Hamilton A, Grierson D: ETH1, sl gene involved in ethylene synthesis in tomato. Plant Mol Biol 17: 141–142 (1991).PubMedCrossRefGoogle Scholar
  54. 54.
    Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ: The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6: 521–530 (1994).PubMedGoogle Scholar
  55. 55.
    Latche A, Dupille E, Rombaldi C, Cleyet-Marel JC, Lelievre JM, Pech JC: Purification, characterization and subcellular localization of ACC oxidase from fruits. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 39–45. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).Google Scholar
  56. 56.
    Lawton KA, Potter SL, Uknes S, Ryals J: Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588 (1994).PubMedGoogle Scholar
  57. 57.
    Li N, Mattoo AK: Deletion of the carboxyl-terminal region of 1-aminocyclopropane-l-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalyticaly hyperactive, monomeric enzyme. J Biol Chem 269: 6908–6917 (1994).PubMedGoogle Scholar
  58. 58.
    Liang X, Abel S, Keller JA, Shen NF, Theologis A: The 1-aminocyclopropane-l-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 11046–11050(1992).PubMedCrossRefGoogle Scholar
  59. 59.
    Lincoln JE, Campbell AD, Oetiker J, Rottmann WH, Oeller PW, Shen NF, Theologis A: LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-l-carboxylate synthase gene of tomato (Lycopersicon esculentum). J Biol Chem 268: 19422–19430 (1993).PubMedGoogle Scholar
  60. 60.
    Lincoln JE, Cordes S, Read E, Fischer RL: Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci USA 84: 2793–2797 (1987).PubMedCrossRefGoogle Scholar
  61. 61.
    Lincoln JE, Fischer RL: Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212: 71–75 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    Liu D, Li N, Dube S, Kalinski A, Herman E, Mattoo AK: Molecular characterization of a rapidly and transiently wound-induced soybean (Glycine max L.) gene encoding 1-aminocyclopropane-l-carboxylate synthase. Plant Cell Physiol 34: 1151–1157 (1993).Google Scholar
  63. 63.
    MacDiarmid CWB, Gardner RC: A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-l-carboxylic acid oxidase. Plant Physiol 101: 691–692 (1993).PubMedCrossRefGoogle Scholar
  64. 64.
    Macnicol AM, Muslin AJ, Williams LT: Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73: 571–583 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    Maeda T, Wurgler-Murphy SM, Saito H: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242–245 (1994).PubMedCrossRefGoogle Scholar
  66. 66.
    Matsuda J, Okabe S, Hashimoto T, Yamada Y: Molecular cloning of hyoscyamine-6-β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266: 9460–9464 (1991).PubMedGoogle Scholar
  67. 67.
    McGarvey DJ, Christoffersen RE: Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. J Biol Chem 267: 5964–5967 (1992).PubMedGoogle Scholar
  68. 68.
    McGarvey DJ, Yu H, Christoffersen RE: Nucleotide sequence of a ripening-related cDNA from avocado fruit. Plant Mol Biol 15: 165–167 (1990).PubMedCrossRefGoogle Scholar
  69. 69.
    Mehta PK, Christen P: Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkyl-glycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with ami-notransferases. Biochem Biophys Res Comm 198: 138–143 (1994).PubMedCrossRefGoogle Scholar
  70. 70.
    Mehta PK, Hale TI, Christen P: Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214: 549–561 (1993).PubMedCrossRefGoogle Scholar
  71. 71.
    Meller Y, Sessa G, Eyal Y, Fluhr R: DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol 23: 453–463 (1993).PubMedCrossRefGoogle Scholar
  72. 72.
    Metraux J-P, Kende H: The role of ethylene in the growth response of submerged deep water rice. Plant Physiol 72: 441–446 (1983).PubMedCrossRefGoogle Scholar
  73. 73.
    Montgomery JR: Regulation of gene expression during tomato fruit ripening. Ph. D. thesis, University of California, Berkeley (1993).Google Scholar
  74. 74.
    Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL: Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90: 5939–5943 (1993).PubMedCrossRefGoogle Scholar
  75. 75.
    Nagasawa S, Tokishita S, Aiba H, Mizuno T: A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol Microbiol 6: 799–807 (1992).PubMedCrossRefGoogle Scholar
  76. 76.
    Nakagawa N, Mori H, Yamazaki K, Imaseki H: Cloning of a complementary DNA for auxin-induced 1-aminocy-clopropane-1 carboxylate synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol 32: 1153–1163 (1991).Google Scholar
  77. 77.
    Nakajima N, Mori H, Yamazaki K, Imaseki H: Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-l-carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31: 1021–1029 (1990).Google Scholar
  78. 78.
    Neljubov D: Uber die horizontale Mutation der Stengel von Pisum sativum und einiger anderer. Pflanzen Beih Bot Zentralbl 10: 128–239 (1901).Google Scholar
  79. 79.
    Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439 (1991).PubMedCrossRefGoogle Scholar
  80. 80.
    Olson DC, White JA, Edelman L, Harkins RN, Kende H: Differential expression of two genes for 1-aminocy-clopropane-l-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88: 5340–5344 (1991).PubMedCrossRefGoogle Scholar
  81. 81.
    Ota IM, Varshavsky A: A yeast protein similar to bacterial two-component regulators. Science 262: 566–569 (1993).PubMedCrossRefGoogle Scholar
  82. 82.
    Park KY, Drory A, Woodson WR: Molecular cloning of an 1-aminocyclopropane-l-carboxylate synthase from senescing carnation flower petals. Plant Mol Biol 18: 377–386 (1992).PubMedCrossRefGoogle Scholar
  83. 83.
    Parkinson JS: Signal transduction schemes of bacteria. Cell 73: 857–871 (1993).PubMedCrossRefGoogle Scholar
  84. 84.
    Parkinson JS, Kofoid EC: Communication modules in bacterial signalling proteins. Annu Rev Genet 26: 71–112(1992).PubMedCrossRefGoogle Scholar
  85. 85.
    Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Van Montagu M, Inze D: Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1: 81–93 (1989).PubMedGoogle Scholar
  86. 86.
    Penarrubia L, Aguilar M, Margossian L, Fischer RL: An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681–687 (1992).PubMedGoogle Scholar
  87. 87.
    Pirrung MC, Kaiser LM, Chen J: Purification and properties of the apple fruit ethylene-forming enzyme. Biochemistry 32: 7445–7450 (1993).PubMedCrossRefGoogle Scholar
  88. 88.
    Raghothama KG, Lawton KA, Goldsbrough PB, Woodson WR: Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol 17: 61–71 (1991).PubMedCrossRefGoogle Scholar
  89. 89.
    Raz V, Fluhr R: Calcium requirement for ethylene-dependent responses. Plant Cell 4: 1123–1130 (1992).PubMedGoogle Scholar
  90. 90.
    Raz V, Fluhr R: Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5: 523–530 (1993).PubMedGoogle Scholar
  91. 91.
    Rick CM, Butler L: Phytogenetics of the tomato. Adv Genet 8: 267–382 (1956).CrossRefGoogle Scholar
  92. 92.
    Roby D, Broglie K, Gaynor J, Broglie R: Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts. Plant Physiol 97: 433–439 (1991).PubMedCrossRefGoogle Scholar
  93. 93.
    Rodrigues-Pousada RA, Rycke RD, Dedonder A, Caeneghem WV, Engler G, Van Montagu M, Van Der Straeten D: The Arabidopsis 1-aminocyclopropane-l-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5: 897–911 (1993).PubMedGoogle Scholar
  94. 94.
    Rombaldi C, Petitprez M, Cleyet-Marel JC, Rouge P, Latche A, Pech JC, Lelievre JM: Immunocytolocalisation of ACC oxidase in tomato fruits. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 96–97. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).Google Scholar
  95. 95.
    Ross AF: Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329–339 (1961).PubMedCrossRefGoogle Scholar
  96. 96.
    Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, Nagy BP, Taylor LP, Campbell AD, Theologis A: 1-Aminocyclopropane-l-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222: 937–961 (1991).PubMedCrossRefGoogle Scholar
  97. 97.
    Sato T, Oeller PW, Theologis A: The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. J Biol Chem 266: 3752–3759 (1990).Google Scholar
  98. 98.
    Sato T, Theologis A: Cloning the mRNA encoding 1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86: 6621–6625 (1989).PubMedCrossRefGoogle Scholar
  99. 99.
    Satoh S, Mori H, Imaseki H: Monomeric and dimeric forms and the mechanism-based inactivation of 1-ami-nocyclopropane-1-carboxylate synthase. Plant Cell Physiol 34: 753–760 (1993).Google Scholar
  100. 100.
    Slater A, Maunders MJ, Edwards K, Schuch W, Grierson D: Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5: 137–147 (1985).CrossRefGoogle Scholar
  101. 101.
    Sonnhammer ELL, Kahn D: Modular arrangement of proteins as inferred from analysis of homology. Prot Sci 3: 482–492 (1994).CrossRefGoogle Scholar
  102. 102.
    Spanu P, Reinhardt D, Boiler T: Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J 10: 2007–2013 (1991).PubMedGoogle Scholar
  103. 103.
    Stock JB, Ninfa AJ, Stock AM: Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490 (1989).PubMedGoogle Scholar
  104. 104.
    Stout V, Gottesman S: RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bact 172: 659–669 (1990).PubMedGoogle Scholar
  105. 105.
    Sung M, Tanizawa K, Tanaka H, Kuramitsu S, Kagamiyama H, Hirotsu K, Okamoto A, Higuchi T, Soda K: Thermostable aspartate aminotransferase from a thermophilic bacillus species: gene cloning, sequence determination, and preliminary X-ray characterization. J Biol Chem 266: 2567–2572 (1991).PubMedGoogle Scholar
  106. 106.
    Tang X, Wang H, Brandt AS, Woodson WR: Organization and structure of the 1-aminocyclopropane-l-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol 23: 1151–1164 (1993).PubMedCrossRefGoogle Scholar
  107. 107.
    Theologis A: One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70: 181–184 (1992).PubMedCrossRefGoogle Scholar
  108. 108.
    Theologis A: What a gas! Curr Biol 3: 369–371 (1993).CrossRefGoogle Scholar
  109. 109.
    Theologis A: Control of ripening. Curr Opin Biotechnol 5: 152–157 (1994).CrossRefGoogle Scholar
  110. 110.
    Theologis A, Huynh TV, Davis RW: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183: 53–68 (1985).PubMedCrossRefGoogle Scholar
  111. 111.
    Theologis A, Oeller PW, Wong LM, Rottmann WH, Gantz DM: Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex development process. Devel Genet 14: 282–295 (1993).CrossRefGoogle Scholar
  112. 112.
    Uhl MA, Miller JF: Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA 91: 1163–1167(1994).PubMedCrossRefGoogle Scholar
  113. 113.
    Van der Straeten D, Djudzman A, Vancaeneghem W, Smalle J, Van Montagu M: Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-l-carboxylic acid and ethylene and specifically affects the ethylene signal-transduction pathway. Plant Physiol 102: 401–408 (1993).Google Scholar
  114. 114.
    Van Der Straeten D, Rodrigues-Pousada RA, ViUarroel R, Hanley S, Van Montagu M: Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-l-carboxylate synthase. Proc Natl Acad Sci USA 89: 9969–9973 (1992).PubMedCrossRefGoogle Scholar
  115. 115.
    Van Der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M: Purification and partial characterization of 1-aminocyclopropane-l-carboxylate synthase from tomato pericarp. Eur J Biochem 182: 639–647 (1989).PubMedCrossRefGoogle Scholar
  116. 116.
    Van Der Straeten D, Wiemeersch LV, Goodman HM, Van Montagu M: Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-l-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87: 4859–4863 (1990).PubMedCrossRefGoogle Scholar
  117. 117.
    Van Doorsselaere J, Gielen J, Van Montagu M, Inze D: A cDNA encoding S-adenosyl-L-methionine synthetase from poplar. Plant Physiol 102: 1365–1366 (1993).PubMedCrossRefGoogle Scholar
  118. 118.
    Ververidis P, John P: Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30: 725–727 (1991).CrossRefGoogle Scholar
  119. 119.
    Wang H, Woodson WR: A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis. Plant Physiol 96: 1000–1001 (1991).PubMedCrossRefGoogle Scholar
  120. 120.
    Wang H, Woodson WR: Nucleotide sequence of a cDNA encoding the ethylene-forming enzyme from petunia corollas. Plant Physiol 100: 535–536 (1992).PubMedCrossRefGoogle Scholar
  121. 121.
    Wilson ID, Zhu YL, Burmeister DM, Dilley DR: Apple ripening-related cDNA clone PAP4 confers ethylene-forming ability in transformed Saccharomyces cerevisiae. Plant Physiol 102: 783–788 (1993).PubMedCrossRefGoogle Scholar
  122. 122.
    Yang SF, Dong JG: Recent progress in research of ethylene biosynthesis. Bot Bull Acad Sin 34: 89–101 (1993).Google Scholar
  123. 123.
    Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189(1984).CrossRefGoogle Scholar
  124. 124.
    Yip W-K, Dong J-G, Kenny JW, Thompson GA, Yang SF: Characterization and sequencing of the active site of 1-aminocyclopropane-l-carboxylate synthase. Proc Natl Acad Sci USA 87: 7930–7934 (1990).PubMedCrossRefGoogle Scholar
  125. 125.
    Yip W-K, Moore T, Yang SF: Differential accumulation of transcripts for four tomato 1-aminocyclopropane-l-carboxylate synthase homologs under various conditions. Proc Natl Acad Sci USA 89: 2475–2479 (1992).PubMedCrossRefGoogle Scholar
  126. 126.
    Zarembinski TI, Theologis A: Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocy-clopropane-1-carboxylate synthase in rice (Oryza sativa L.). Mol Biol Cell 4: 363–373 (1993).PubMedGoogle Scholar
  127. 127.
    Jansonius JN, Eichele G, Ford GC, Picot D, Thaller C, Vincent GC: Spatial structure of mitochondrial aspartate aminotransferase. In: Christen P, Metzler DE (eds) Transaminases, pp. 109–138. John Wiley and Sons, New York (1985).Google Scholar
  128. 128.
    Rost B, Sander C: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90: 7558–7562 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Thomas I. Zarembinski
    • 1
  • Athanasios Theologis
    • 1
  1. 1.Plant Gene Expression CenterAlbanyUSA

Personalised recommendations