Graphite: Flat, Fibrous and Spherical

  • John A. Jaszczak

Abstract

The paradigm for the structure of graphite is that of a staggered stacking of flat layers of carbon atoms (Figure 6-1). Individual layers, sometimes referred to as graphene sheets,1 are weakly bonded to each other and are composed of strongly bonded carbon atoms at the vertices of a network of regular hexagons in a honeycomb pattern.2 Both the properties and the morphology of graphite reflect its highly anisotropic structure. Due to the strong bonding within layers and the weak bonding between layers, the growth of graphite takes place predominantly along the edges of the layers (perpendicular to the c axis) and only very slowly normal to the layers (parallel to the c axis). As a result of the growth rate anisotropy, the anisotropic surface energy, and the crystallographic symmetry, the expected morphology for graphite crystals is that of tabular hexagonal prisms.3 However, well-formed natural crystals, such as shown in Figure 6-2, are rare,4 and it has been said that near-ideal crystals of graphite may be rarer than diamonds.5 Well-formed, laboratory-grown crystals of graphite are also uncommon. During the 1960s, graphite crystals from Ticonderoga, New York, and Sterling Hill, New Jersey, became a standard of perfection for experiments and for comparison with laboratory-grown crystals.6,7

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, K. Surihara, I.L. Spain, and H.A. Goldberg, Graphite Fibers and Filaments ( Springer, Berlin, 1988 ).CrossRefGoogle Scholar
  2. 2.
    E.J. Freise, Nature (London), 193, 671 (1962).CrossRefGoogle Scholar
  3. 3.
    For a review of the relations between crystal structure and external shapes see, for example, Crystal Form and Structure, C.J. Schneer, Ed. (Dowden, Hutchison & Ross, Stroudsburg, PA, 1977 ).Google Scholar
  4. 4.
    J.A. Jaszczak, Mineralogical Record, 21, 427 (1991).Google Scholar
  5. 5.
    A.R. Ubbethode, Endevour, 24 (92), 63 (1965).CrossRefGoogle Scholar
  6. 6.
    C. Patache, Am. Mineral, 26, 709 (1941).Google Scholar
  7. 7.
    S.B. Austerman, in Chemistry and Physics of Carbon, Vol. 4, P.L. Walker, Jr., Ed. (Marcel Dekker, New York, 1968 ), p. 137.Google Scholar
  8. 8.
    For a review of less ordered spherical carbons in carbon black, see A. Oberlin, in Chemistry and Physics of Carbon, Vol. 22, P.A. Thrower, Ed. ( Marcel Dekker, New York, 1989 ), p. 1.Google Scholar
  9. 9.
    H.W. Kroto, Nature (London), 329, 529 (1987).CrossRefGoogle Scholar
  10. 10.
    S.E. Stein and R. Leonard, Mol. Struct. Energ, 2, 37 (1987).Google Scholar
  11. 11.
    D. Ugarte, Chem. Phys. Iett., 198, 596 (1992).Google Scholar
  12. 12.
    H.W. Kroto, J. Chem. Sot. Dalton Trans., 10, 2141 (1992).CrossRefGoogle Scholar
  13. 13.
    H.W. Kroto and K. McKay, Nature (London), 331, 328 (1988).CrossRefGoogle Scholar
  14. 14.
    D.D. Double and A. Hellawell, in The Metallurgy of Cast Iron, B. Lux, I. Minkoff, and E. Mollard, Eds. (Georgi, St. Saphorin, Switzerland, 1975), p. 509.Google Scholar
  15. 15.
    D.D. Double and A. Hellawell, Acta Metall., 22, 481 (1974).CrossRefGoogle Scholar
  16. 16.
    D.D. Double and A. Hellawell, Acta Metall., 17, 1071 (1969).CrossRefGoogle Scholar
  17. 17.
    S. Ametinckx, W. Luyten, T. Krekels, G. Van Tendeloo, and J. Van Landuyt, J. Cryst. Growth, 121, 543 (1992).CrossRefGoogle Scholar
  18. 18.
    R.E. Smalley, The Sciences, 31, 22 (1991)Google Scholar
  19. R.F. Curl and R.E. Smalley, Sci. Am., 265, 54 (1991)CrossRefGoogle Scholar
  20. R.F. Curl and R.E. Smalley, Phil. Trans.: Phys. Sci. Eng., 343, 1 (1993)CrossRefGoogle Scholar
  21. H.W. Kroto, A.L. MacKay, G. Turner, D.R.M. Walton and R.C. Haddon, Science, 261, 1545 (1993)CrossRefGoogle Scholar
  22. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, J. Mater. Res., 8, 2054 (1993)CrossRefGoogle Scholar
  23. H.W. Kroto, J.E. Fischer, and D.E. Cox, Eds. ( Pergamon, Oxford, 1993 )Google Scholar
  24. W.E. Billups and M.A. Ciufolini, Eds. ( VCH, New York, 1993 )Google Scholar
  25. 19.
    M. Hillert and N. Lange, Z. Krist., 111, 24 (1958).CrossRefGoogle Scholar
  26. 20.
    R. Bacon, J. Appl. Phys., 31, 283 (1960).CrossRefGoogle Scholar
  27. 21.
    R.T.K Baker and P.S. Harris, in Chemistry and Physics of Carbon, Vol. 14., P.L. Walker, Jr., and P.A. Thrower, Eds. ( Marcel Dekker, New York, 1978 ), p. 83.Google Scholar
  28. G.G. Tibbetts, in Carbon Fibers, Filaments, and Composites,J.L. Figueiredo et al., Eds. (Kluwer, Dordrecht, 1990), p. 73.Google Scholar
  29. 23.
    N.M. Rodriguez, J. Mater. Res., 8, 32–33 (1993).Google Scholar
  30. 24.
    A. Yoshida, Y. Hishiyama, and M. Endo, in Extended Abstracts of the 17th Biennial Conference on Carbon, Lexington, KY ( American Carbon Society, University Park, PA, 1985 ), p. 297.Google Scholar
  31. 25.
    S. lijima, Nature (London), 354, 56 (1991).CrossRefGoogle Scholar
  32. 26.
    S. lijima, P.M. Ajayan, and T. Ichihashi, Phys. Rev. Lett., 69, 3100 (1992).CrossRefGoogle Scholar
  33. 27.
    D. Ugarte, Nature (London), 359, 707 (1992).CrossRefGoogle Scholar
  34. 28.
    D. Ugarte, Europhys. Lett., 22, 45 (1993).CrossRefGoogle Scholar
  35. 29.
    D. Ugarte, Chem. Phys. Lett., 207, 473 (1993).CrossRefGoogle Scholar
  36. 30.
    P.M. Ajayan and S. lijima, Nature (London), 361, 333 (1993).CrossRefGoogle Scholar
  37. 31.
    S. lijima and T. Ichihashi, Nature (London), 363, 603 (1993).CrossRefGoogle Scholar
  38. 32.
    D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London), 363, 605 (1993).CrossRefGoogle Scholar
  39. 33.
    A.R. Patel and S.V. Deshapande, Carbon, 8, 242 (1970).CrossRefGoogle Scholar
  40. 34.
    H. Murayama and T. Maeda, Nature (London), 345, 791 (1990).CrossRefGoogle Scholar
  41. 35.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature (London), 347, 354 (1990).CrossRefGoogle Scholar
  42. 36.
    R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbogh, and F.A. Thiel, Nature (London), 350, 320 (1991).CrossRefGoogle Scholar
  43. 37.
    R.M. Fleming, T. Siegrist, P.M. March, B. Hessen, A.R. Kortan, D.W. Murphy, R.C. Haddon, R. Tycko, G. Dabbogh, A.M. Mujsce, M.L. Kaplan, and S.J. Zahurak, Mat. Res. Soc. Symp. Proc., 206, 691 (1991).CrossRefGoogle Scholar
  44. 38.
    P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. Denestein, J.P. McCauley, Jr, A.B. Smith III, and D.E. Cox, Phys. Rev. Lett., 66, 2911 (1991).CrossRefGoogle Scholar
  45. 39.
    R.L. Meng, D. Ramirez, X. Jiang, P.C. Chow, C. Diaz, K. Matsuishi, S.C. Moss, P.H. Hor, and C.W. Chu, Appl. Phys. Lett., 59, 3402 (1992).CrossRefGoogle Scholar
  46. 40.
    Y. Yosida, Jpn. J. Appl. Phys., 31 Pt. 2, L505 (1992).Google Scholar
  47. 41.
    M. Klénn, in Dislocations in Solids, Vol. 5., F.R.N. Nabarro, Ed. ( North-Holland, Amsterdam, 1980 ), p. 243.Google Scholar
  48. 42.
    S. lijima, J. Cryst. Growth, 50, 675 (1980).CrossRefGoogle Scholar
  49. 43.
    H. Morrogh and W.J. Williams, J. Iron Steel Inst., 155, 321 (1947).Google Scholar
  50. 44.
    B. Lux, AFS Cast Metals Res. J., 8, 25 (1972)Google Scholar
  51. B. Lux, AFS Cast Metals Res. J., 8, 49 (1972).Google Scholar
  52. 45.
    JP. Sadocha and J.E Gruzleski, in The Metallurgy of Cast Iron, B. Lux, I Minkoff, and E Mollauri, Fris (Georgi, St. Saphorin, Switzedand, 1975 ), p. 443.Google Scholar
  53. 46.
    M.J. Hunter and G.A. Chadwick, J. Iron Steel Inst., 210, 117 (1972).Google Scholar
  54. 47.
    M.J. Hunter and G.A. Chadwick, J. Iron Steel Inst., 210, 701 (1972).Google Scholar
  55. 48.
    B. Miao, K. Fang, W. Bian, and G. Liu, Acta Metall. Mater., 38, 2167 (1990).CrossRefGoogle Scholar
  56. 49.
    R. Brett and G.T. Higgins, Science, 156, 819 (1967).CrossRefGoogle Scholar
  57. 50.
    R. Brett and G.T. Higgins, Geochim. Cosmochim. Acta, 33, 1473 (1969).CrossRefGoogle Scholar
  58. 51.
    M. Weathers and W.A. Bassett, Phys. Chem. Minerals, 15, 105 (1987).CrossRefGoogle Scholar
  59. 52.
    Y.L. Orlov, The Mineralogy of the Diamond (Wiley, New York, 1977 ), pp. 14–15.Google Scholar
  60. 53.
    I. Simonsen, S. Chevacharoenkul, Y. Horie, T. Akashi, and H. Sawaoka, J. Mater. Sci., 24, 1486 (1989).CrossRefGoogle Scholar
  61. 54.
    H.H. Stadelmaier, Z. Metallkunde, 51, 601 (1960).Google Scholar
  62. 55.
    K. Yamada, H. Kunishige, and A.B. Sawaoka, Naturwissenschaften, 78, 450 (1991).CrossRefGoogle Scholar
  63. 56.
    P.R. Buseck, S.J. Tsipursky, and R. Hettich, Science, 257, 215 (1992).CrossRefGoogle Scholar
  64. 57.
    TK Daly, P.R. Buseck, P. Williams, and C.F. Lewis, Science, 259, 1599 (1993).CrossRefGoogle Scholar
  65. 58.
    L. Becker, G.D. McDonald, and J.L. Bada, Nature (London), 361, 595 (1993).CrossRefGoogle Scholar
  66. 59.
    P.P.K. Smith and P. Buseck, Science, 212, 322 (1981).CrossRefGoogle Scholar
  67. 60.
    S. Aman, E. Anders, A. Virag, and E. Zinner, Nature (London), 345, 238 (1990).CrossRefGoogle Scholar
  68. 61.
    I. Wright, Nature (London), 365, 786 (1993).CrossRefGoogle Scholar
  69. 62.
    S. Amari, P. Hoppe, E. Zinner, and R.S. Lewis, Nature (London), 365, 806 (1993).CrossRefGoogle Scholar
  70. 61.
    E. Anders and E. Zinner, Meteoritics, 28, 490 (1993).Google Scholar
  71. 64.
    T.J. Bernatowicz, S. Amari, E.K. Zinner, and R.S. Lewis, Astrophys. J., 373, L73 (1991).CrossRefGoogle Scholar
  72. 65.
    M.S. de Vries, K Reihs, H.R. Wendt, W.G. Golden, H.E. Hunziker, R. Hemming, E. Peterson, and S. Chang, Geochim. Cosmochim. Acta, 57, 933 (1993).CrossRefGoogle Scholar
  73. 66.
    V.N. Kvasnitsa and V.G. Yatsenko, Mineralogicheskii Zhurnal, 13 (1), 95 (1991).Google Scholar
  74. 67.
    C.S. Lemanski, Jr., The Picking Table, 32 (1), 11 (1991).Google Scholar
  75. 68.
    E. Stach, Z. Deut. Geologischen Gesellschaft, 103, 233 (1951).Google Scholar
  76. 69.
    L. Margulis, G. Salitra, R. Tenne, and M. Talianker, Nature (London), 365, 113 (1993).CrossRefGoogle Scholar
  77. 70.
    L. Horvath and R.A. Gault, Mineral. Record, 21, 284 (1990).Google Scholar
  78. 71.
    B. Miao, D.O. Northwood, W. Bian, K. Fang, and M.H. Fan, J. Mater. Sci., 29, 255 (1994).CrossRefGoogle Scholar
  79. 72.
    F. Laves and Y. Baskin, Z. Krist., 107, S. 337–356 (1956).CrossRefGoogle Scholar
  80. 73.
    L. Becker, J.L. Bada, R.E. Winans, J.E. Hunt, T.E. Bunch, and B.M. French, Science 265, 642 (1994).CrossRefGoogle Scholar
  81. 74.
    D. Heymann, L.P.F. Chibante, R.R. Brooks, W.S. Wolbach, and R.E. Smalley, Science, 265, 645 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • John A. Jaszczak

There are no affiliations available

Personalised recommendations