Sustainability in Forestry: Theory and a historical case study

  • M. Hauhs
  • H. Lange
Part of the Managing Forest Ecosystems book series (MAFE, volume 1)


The concept of sustainable development contains two independent goals: The connotation of unlimited economic growth in the term “development” and the perpetual conservation of natural resources implied by the concept of sustainable management. These two goals have been difficult to reconcile. Traditionally, sustainability is connected to the search for truly renewable resources in the realm of natural sciences and to the search for truly human needs in the realm of social sciences. Here we argue that in order to operationalize the concept of sustainable development it is necessary to distinguish two fundamentally different types of technologies by which humans develop and utilise resources. The proposed dualism of technologies is based on the respective historical contexts of their origin. One type of technology, exemplified by European forestry, depends on systems derived from natural history, but empirically by trial and error changed into an ahistoric, i.e. sustainable management system that may be extended infinitely. The second type of technology depends on scientific understanding of ahistoric material building blocks that can be recombined and developed into a virtually infinite technical potential through (open-ended) cultural history. The current dilemma of ecological problems becomes one of learning which of the technical potentials and traditions belongs to which category and how to organise the interface between them. We present and discuss a historic example were the interdependent use of the two types of technologies is exceptionally well-documented: The Rammelsberg mine at Goslar, Germany. Delineating a technical culture into realms organised by one or the other type of technology remains a non-trivial problem, but the continuous updating and learning process can be organised in a straight-forward manner. The proposed concept generalises lessons from the example of European forest history and suggests an operational implementation of sustainable ecosystem utilisation.


ecosystem utilisation Rammelsberg mine exploratory and emancipatory technology Harz mountains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agricola, G., 1556: De re metallica Libri, German translation reprinted 1978, VDI Verlag, Düsseldorf.Google Scholar
  2. Atmanspacher, H., 1992: Wolfgang Pauli und die Alchemie Teil II: Das opus alchymicum. Zeitschrift für Parapsychologie und Grenzgebiete der Psychologie 34, 33–63.Google Scholar
  3. Bartels, Ch., 1988: Das Erzbergwerk Rammeisberg. Preussag AG Metall (ed.), Goslar.Google Scholar
  4. Bartels, Ch., 1992: Vom frühneuzeitlichen Montangewerbe zur Bergbauindustrie. Veröffentl. Deutsches Bergbau-Museum Bochum Vol. 54.Google Scholar
  5. Bartels, Ch., 1997: Strukturwandel in Montanbetrieben des Mittelalters und der frühen Neuzeit in Abhängigkeit von Lagerstättenstrukturen und Technologie. In H-J. Gerhard (ed.): Struktur und Dimension Bd. I: 25–70. Franz-Steiner Verlag, Stuttgart.Google Scholar
  6. Baskerville, G.L.., 1995: The Forestry Problem: Adaptive Lurches of Renewal, in Gunderson, L.H., Holling, C.S., and Light, St. S. (eds.): Barriers and Bridges to the Renewal of Ecosystems and Institutions, Columbia University Press, New York, 37–102.Google Scholar
  7. Bauer, H. 1997: Die älteste Karte des nördlichen Harzes bei Goslar. Harz-Zeitschrift 33, 45–77.Google Scholar
  8. Baumgarten, W., 1933: Beziehung zwischen Forstwirtschaft und Berg- und Hüttenwesen im Kommunionharz, Diss. Univ. of Munich.Google Scholar
  9. Binswanger, H.C., 1994: Money and Magic: A Critique of the Modern Economy in the Light of Goethe’s Faust. Univ. Of Chicago Press.Google Scholar
  10. Böhme, H., 1988: Natur und Subjekt. Suhrkamp, Frankfurt a.M.Google Scholar
  11. Bornhardt, W., 1931: History of the mining at the Rammelsberg from its beginnings until modern times (in German), Archiv für Lagerstättenforschung 52, 1–366.Google Scholar
  12. Casti, J.L., 1997: The Borderline. On the limits of scientific knowledge. Complexity 3(1), 5–7.CrossRefGoogle Scholar
  13. Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J. and Hedin, L.O., 1999: Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497.CrossRefGoogle Scholar
  14. Clements, F.E., 1936: Nature and structure of the climax. J. Ecology 24, 252–284.CrossRefGoogle Scholar
  15. Eliade, M., 1992: Schmiede und Alchemisten. Herder Spektrum, Freiburg. (German translation from: Forgerons et Alchemistes in 1956).Google Scholar
  16. Fontana, W. and Ballati, S., 1999: Complexity — Why the sudden fuss? Complexity 4(3), 14–16.CrossRefGoogle Scholar
  17. Gatto, M., 1995: Sustainability: Is it a well defined concept? Ecological applications 5, 1181–1183.Google Scholar
  18. Gell-Mann, M., 1994 The Quark and the Jaguar. W.H. Freeman, New York.Google Scholar
  19. Gould, St.J., 1989 Wonderful Life. W.W. Norton, New York.Google Scholar
  20. Gunderson, L.H., Holling, C.S. and Light, S.S. (eds.), 1995: Barriers and Bridges to the Renewal of Ecosystems and Institutions. Columbia Univ. Press, New York.Google Scholar
  21. Hauhs, M., 1989: Lange Bramke: An Ecosystem Study of a Forested Catchment. In D.C Adriano and M. Havas (eds.), Acidic Precipitation, Vol. I: 275–305. Springer Verlag, New York.CrossRefGoogle Scholar
  22. Hauhs, M. and Lange, H., 1996: Das Problem der Prozeßidentifikation in Waldökosystemen am Beispiel Wassertransport. IHI-Schriften Zittau 2, 212–222.Google Scholar
  23. Hauhs, M., Dörwald, W., Kastner-Maresch, A. and Lange, H., 1999: The Role of Visualization in Forest Growth Modelling. In: Amaro, A. und Tomé, M. (eds.), Empirical and process-based models for forest tree and stand growth simulation (EDIÇAOES SALAMANDRE, Lissabon), 403–418.Google Scholar
  24. Henschke, E., 1974: Landesherrschaft und Bergbauwirtschaft, Schriften zur Wirtschafts- und Sozialgeschichte Bd. 23, Duncker und Humbolt, Berlin.Google Scholar
  25. Hillebrecht, M.L., 1982: Die Relikte der Holzkohlewirtschaft als Indikatoren für Waldnutzung und Waldentwicklung, Göttinger Geographische Abhandlungen, Vol. 79. Erich Goltze Verlag, Göttingen.Google Scholar
  26. Horgan, J., 1995: The End of Science. Broadway Books, New York.Google Scholar
  27. Huntley, B. and Webb III, T., 1988: Vegetation history. Kluwer, Dordrecht.CrossRefGoogle Scholar
  28. Ingold, T., 1986: Evolution and Social Life. Cambridge Univ. Press, Cambridge.Google Scholar
  29. Ingold, T., 1994: Companion Encyclopedia of Anthropology. Routledge, London.Google Scholar
  30. Jamieson, D., 1998: Sustainability and beyond. Ecological Economics 24, 183–192.CrossRefGoogle Scholar
  31. Kampis, G., 1991: Self-modifying systems in biology and cognitive science. Pergamon Press, Oxford.Google Scholar
  32. Klappauf, L., 1996: Montanarchäologie im Harz. In: Jockenhövel, A. (ed.), Vierteljahreszeitschrift für Sozial-und Wirtschaftsgeschichte, Beiheft 121, 93–111.Google Scholar
  33. Lange, H., Thies, B., Kastner-Maresch, A., Dörwald, W., Kim, J.T. and Hauhs, M., 1998: Investigating forest growth model results on evolutionary time scales. In: Adami, C., Belew, R.K., Kitano, H. and Taylor, C.E. (eds). Artificial Life VI, pp. 418–422. MIT Press.Google Scholar
  34. Lange, H., 1999: Are Ecosystems Dynamical Systems? International Journal of Computing Anticipatory Systems 3, 169–186.Google Scholar
  35. Leibundgut, C., 1978: Die Waldpflege. Haupt Verlag, Bern.Google Scholar
  36. Ließmann, W., 1997: Historical mining in the Harz (In German). Springer, Berlin.Google Scholar
  37. Liski, J., Ilvesniemi, H., Mäkelä, A., Starr, M., 1998: Model analysis of the efffects of soil age, fires, and harvesting on the carbon storage of boreal forest soils. European Journal of Soil Science 49, 407–416.CrossRefGoogle Scholar
  38. Mohr, K, 1993: Geologie und Minerallagerstätten des Harzes. Schweizerbart’sche Verlagsbuchhandlung Stuttgart.Google Scholar
  39. Morowitz, H., 1998: Evolutionary Complexity. Complexity 3(6), 12–14.CrossRefGoogle Scholar
  40. North, D.C., 1973: The rise of the Western world. A new economic history. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  41. Odum, E.P., 1953: Fundamentals of ecology. Philadelphia.Google Scholar
  42. Oesten, G., 1995: Zur forstökonomischen Diskussion über das Leitbild einer nachhaltigen Waldwirtschaft. Forst und Holzwirt 6, 171–175.Google Scholar
  43. Pieper, W., 1955: Ulrich Rülein von Calw und sein Bergbüchlein. Freiburger Forschungshefte D7, Akademie Verlag, Berlin.Google Scholar
  44. Pretzsch, H., 1999: Waldwachstum im Wandel — Konsequenzen für Forstwissenschaften und Forstwirtschaft. Forstwissenschaftliches Centralblatt (in print).Google Scholar
  45. Rapp, P.E., Schmah, T.I., and Mees, A.I., 1999: Models of knowing and the investigation of dynamical systems. Physica D 132, 133–149.CrossRefGoogle Scholar
  46. Riehl, G., 1968: Die Forstwirtschaft im Oberharzer Bergbaugebiet von der Mitte des 17. bis zum Ausgang des 19. Jahrhunderts. Aus dem Walde, Vol. 15. Lower Saxony forest administration, Hannover.Google Scholar
  47. Rubner, H., 1967: Forstgeschichte im Zeitalter der industriellen Revolution. Schriften zur Wirtschafts- und Sozialgeschichte Bd. 8. Duncker und Humbolt, Berlin.Google Scholar
  48. Ruhnau, E, 1997: The Deconstruction of Time and the Emergence of Temporality. In: Atmanspacher, H. and Ruhnau, E. (eds.), Time, Temporality, Now: Experiencing Time and Concepts of Time in an Interdisciplinary Perspective. Springer, Berlin, 53–70.Google Scholar
  49. Schanz, H., 1994: Forstliche Nachhaltigkeit aus der Sicht von Forstleuten in der Bundesrepublik Deutschland. Arbeitspapier 1994, Institut für Forsteinrichtung und Forstliche Betriebslehre, Univ. Freiburg.Google Scholar
  50. Schellnhuber, H.J. and Wenzel, V. (eds.), 1998: Earth System Analysis. Integrating Science for Sustainability. Springer-Verlag, Berlin.Google Scholar
  51. Schellnhuber, H.J., 1999: Earth system analysis and the second Copernican revolution. Suppl. Nature 402 (6761), C19–C23.Google Scholar
  52. Schmidt, M., 1989: Die Wasserwirtschaft des Oberharzer Bergbaues. Schriftenreihe der Frontinus Gesellschaft, Bd. 13, Bergisch-Gladbach.Google Scholar
  53. Sigaut, F., 1994: Technology. In: Ingold, T. (ed.), Companion Encyclopedia of Anthropology. Routledge, London, 420–459.Google Scholar
  54. Schubart, W., 1978: Die Verbreitung der Fichte im und am Harz vom hohen Mittelalter bis in die Neuzeit. Aus dem Walde, Vol. 28. Lower Saxony forest administration, Hannover.Google Scholar
  55. Schübeier, D., 1997: Untersuchungen zur standortabhängigen Wachstumsmodellierung bei der Fichte. Diss., Institute of Forest Management and Growth research, Georg-August-Univ. of Göttingen.Google Scholar
  56. Schwappach, 1912: Ertragstafeln der wichtigeren Holzarten. J. Neumann Verlag, Neudamm.Google Scholar
  57. Steinsiek, P.M., 1999: Zur Geschichte staatlicher Maßnahmen des Ressourcenschutzes am Beispiel der nutzungsbedingten Veränderungen von Waldökosystemen des Westharzes zwischen 1550 und 1810. Diss., Univ. Göttingen.Google Scholar
  58. Wardle, D.A., Zackrisson, O., Hörnberg, G. and Galtet, C., 1997: The Influence of Island Area on Ecosystem Properties. Science 277, 1296–1299.CrossRefGoogle Scholar
  59. White, L. Jr, 1940: Technology and invention in the Middle Ages, Speculum 15, 141–59.CrossRefGoogle Scholar
  60. White, M., 1997: Isaac Newton the last sorcerer. Fourth Estate, LondonGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Hauhs
  • H. Lange
    • 1
  1. 1.Bayreuth Institute of Terrestrial Ecosystem Research (BITÖK)University of BayreuthBayreuthGermany

Personalised recommendations