Advertisement

Genetic Engineering of Plants

  • Donald Grierson
  • Simon N. Covey
Chapter
Part of the Tertiary Level Biology book series (TLB)

Abstract

Over the past 50 years or so, conventional plant breeding, combined with improved agricultural practices and modern technology, has contributed to a dramatic increase in the production of plants for food. Not all countries have achieved the same increase in food production, however, and many are unable to feed their own populations. The high agricultural production in some developed countries depends upon favourable climatic conditions, high input of fertilizers and crop protection chemicals, and the successful development of new varieties. It is doubtful whether poorer countries will be able, or even wish, to develop this type of agriculture. Even in countries with a modern food production industry, the input costs are very substantial, and the continued operation of intensive agricultural production raises a number of important environmental and economic issues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.CrossRefPubMedGoogle Scholar
  2. Bevan, M.W. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8722.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bevan, M.W., Flavell, R.B. and Chilton, M-D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature (London) 304, 184–187.CrossRefGoogle Scholar
  4. Beversdorf, W.D., Weiss-Lerman, J. and Erickson, L.R. (1980) Registration of triazine-resistant Brassica campestris germplasm. Crop Sci. 20, 289.Google Scholar
  5. Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I. and Hohn, T. (1984) Expression of a bacterial gene in plants by using a viral vector. Nature (London) 310, 511–514.CrossRefGoogle Scholar
  6. Boutry, M., Nagy, F., Poulsen, C., Aoyagi, K. and Chua, N-H. (1987) Targeting of bacterial chloramphenicol acetyl-transferase to mitochondria in transgenic plants. Nature (London) 328, 340–342.CrossRefGoogle Scholar
  7. Callow, J.A. (1982) Molecular aspects of fungal infections. In The Molecular Biology of Plant Development, eds. H. Smith and D. Grierson, Blackwell, Oxford, 467–497.Google Scholar
  8. Caplan, A., Herrera-Estrella, L., Inzé, D., Van Haute, E., Van Montagu, M., Schell, J. and Zambryski, P. (1983) Introduction of genetic material into plant cells. Science 222, 815–821.CrossRefPubMedGoogle Scholar
  9. Collinge, D.B. and Slusarenko, A.J. (1987) Plant gene expression in response to pathogens. Plant Mol. Biol. 9, 389–410.CrossRefPubMedGoogle Scholar
  10. Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E. and Stalker, D.M. (1985) Expression in plants of a mutant aro A gene from Salmonella typhimurium confers tolerance to glyphosate. Nature (London) 317, 741–744.CrossRefGoogle Scholar
  11. Comai, L. and Stalker, D.M. (1986) Mechanisms of action of herbicides and their molecular manipulation. In Oxford Surveys of Plant Molecular and Cell Biology, Vol. 3, ed. B.J. Miflin, Oxford University Press, Oxford, 116–195.Google Scholar
  12. Della Cioppa, G., Bauer, S.C., Klein, B.K., Shah, D.M., Fraley, R.T. and Kishore, G.M. (1986) Translocation of the precursor of 5-enol pyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83, 6873–6877.CrossRefGoogle Scholar
  13. De Block, M., Botterman, J. Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, N.R., Thompson, C., Van Montagu, M. and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.PubMedGoogle Scholar
  14. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C. and Wilson, T.M.A. (1987) In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science 236, 1122–1124.PubMedGoogle Scholar
  15. Gerlach, W., Llewellyn, D. and Haseloff, J. (1987) Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature (London) 328, 802–805.CrossRefGoogle Scholar
  16. Grimsley, N., Hohn, T., Davies, J.W. and Hohn, B. (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature (London) 325, 177–179.Google Scholar
  17. Harrison, B.D., Mayo, M.A. and Baulcombe, D.C. (1987) Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature (London) 328, 799–802.CrossRefGoogle Scholar
  18. Hernstadt, C., Soares, G.G., Wilcox, E.R. and Edwards, D.L. (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Biotechnology 4, 305–308.Google Scholar
  19. Herrera-Estrella, L., Depicker, A., Van Montagu, M. and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti plasmid-derived vector. Nature (London) 303, 209–213.CrossRefGoogle Scholar
  20. Horsch. R.B., Fraley, R.T., Rogers, S.G., Sanders, P.R., Lloyd, A. and Hoffmann, N. (1984) Inheritance of functional foreign genes in plants. Science 223, 496–498.CrossRefGoogle Scholar
  21. Hepburn, A., Clark, L.E., Pearson, L. and White, J. (1983) The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumour. J. Mol. Appl. Genet. 2, 315–329.PubMedGoogle Scholar
  22. Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3908.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C. (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature (London) 327, 70–73.CrossRefGoogle Scholar
  24. Loesh-Fries, L.S. Merlo, D., Zinnen, T., Burhop, L., Hill, K., Krahn, K., Jarvis, N., Nelson, S. and Halk, E. (1987) Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6, 1845–1851.CrossRefGoogle Scholar
  25. Ow, D.W., Wood, K.V., DeLuca, M., De Wet, J.R., Helinski, D.R. and Howell, S.H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.CrossRefPubMedGoogle Scholar
  26. Paszkowski, J., Shillito, R.D., Saul, M.W., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3, 2717–2722.PubMedPubMedCentralCrossRefGoogle Scholar
  27. de la Pena, A., Lörz, H. and Schell, J. (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature (London) 325, 274–276.CrossRefGoogle Scholar
  28. Takamatsu, N., Ishikawa, M., Meshi, T. and Okada, Y. (1987) Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV RNA. EMBO J. 6, 307–311.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Tepfer, M. and Casse-Delbart, F. (1987) Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol. Sci. 4, 24–28.PubMedPubMedCentralGoogle Scholar
  30. Van den Broeck, G., Timko, M.P., Kausch, A.P., Cashmore, A.R., Van Montagu, M. and Herrera-Estrella, L. (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1, 5-bisphosphate carboxylase. Nature (London) 313, 358–363.CrossRefGoogle Scholar
  31. Plant DNA Infectious Agents, eds. Th. Hohn and J. Schell, Springer Verlag, Wien, New York (1987).Google Scholar

Copyright information

© Chapman & Hall 1988

Authors and Affiliations

  • Donald Grierson
    • 1
  • Simon N. Covey
    • 2
  1. 1.Department of Physiology and Environmental ScienceUniversity of NottinghamUK
  2. 2.John Innes Institute, AFRC Institute of Plant Science ResearchNorwichUK

Personalised recommendations