Mitochondrial DNA Organization and Function

  • Donald Grierson
  • Simon N. Covey
Part of the Tertiary Level Biology book series (TLB)


Mitochondria play a vital role in the generation of energy in all eukaryotic organisms. They possess an outer and inner membrane system, separated by an inter-membrane space, and an internal matrix. They contain their own DNA, enzymes for DNA replication and transcription, and ribosomes and tRNAs for protein synthesis. The 78S ribosomes of mitochondria are different from those in chloroplasts and the cytosol, and a slightly different genetic code is used. Mitochondria synthesize only a relatively small number of polypeptides essential to their role in electron transport and ATP production. The majority are encoded by nuclear DNA, translated in the cytosol on 80S ribosomes, and transported into the mitochondria.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Serres, J., Isaac, P.G., Small, I.D. and Leaver, C.J. (1987) Mitochondrial genome rearrangements associated with the cytoplasmic male sterile phenotype in maize and sorghum. In Developmental Mutants in Higher Plants, eds. H. Thomas and D. Grierson, Cambridge University Press, Cambridge, 53–71.Google Scholar
  2. Boutry, M., Nagy, F., Poulsen, C., Aoyagi, K. and Chua, N-H. (1987) Targeting of bacterial chloramphenicol acetyl-transferase to mitochondria in transgenic plants. Nature (London) 328, 340–342.CrossRefGoogle Scholar
  3. Carignari, G., Grondinsky, O., Frezza, D., Schiavon, E., Bergantino, E. and Slonimski, P.P. (1983) An mRNA maturase is encoded by the first intron of the mitochondria] gene for the subunit 1 of cytochrome oxidase in S. cerevisiae. Cell 35, 733–742.Google Scholar
  4. Chao, S., Sederoff, R.R. and Levings III, C.S. (1983) Partial sequence analysis of the 5S to 18S rRNA gene region of the maize mitochondria] genome. Plant Physiol. 71, 190–193.Google Scholar
  5. Dewey, R.E., Levings III, C.S. and Timothy, D.H. (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44, 439–449.PubMedGoogle Scholar
  6. Ellis, R.J. (1982) Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature (London) 299, 678–679.CrossRefGoogle Scholar
  7. Ferguson, S.J. (1986) The ups and downs of P/O ratios (and the question of non-integral coupling stoichiometries for oxidative phosphorylation and related processes). TIBS 11, 351–353.Google Scholar
  8. Hiesel, R., Schobel, W., Schuster, W. and Brennicke, A. (1987) The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences. EMBO J. 6, 29–34.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Holm, L., Saraste, M. and Wilkstrom, M. (1987) Structural models of the redox centres in cytochrome oxidase. EMBO J. 6, 2819–2823.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hurt, E.C. and van Loon, A.P.G.M. (1986) How proteins find mitochondria and intramitochondrial compartments. TiBS 11, 204–207.Google Scholar
  11. Jukes, T.H. (1983) Mitochondrial codes and evolution, Nature (London) 301, 19–20.CrossRefGoogle Scholar
  12. Kleene, R., Pfanner, N., Pfaller, R., Link, T.A., Sebald, W. Neupert, W. and Tropschug, M. (1987) Mitochondrial porin of Neurospora crossa: cDNA cloning, in vitro expression and import into mitochondria. EMBO J. 6, 2627–2633.Google Scholar
  13. Kück, U., Stahl, U., and Esser, K. (1981) Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Current Genet. 3, 151–156.CrossRefGoogle Scholar
  14. Leaver, C.J., Hack, E., Dawson, A.J., Isaac, P.G. and Jones, U.P. (1983) Mitochondrial genes and their expression in higher plants. In Nucleo-mitochondrial Interactions, eds. R.J. Schweyn, K. Wolf, and K. Kauderwitz, Walter de Gruyter, Berlin, 269–283.Google Scholar
  15. Lonsdale, D.M., Hodge, T.P. and Fauron, C.M.R. (1984) The physical map and organization of the mitochondrial genome from fertile cytoplasm of maize. Nucleic Acids Res. 12, 9249–9261.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ohba, M. and Schatz, G. (1987) Protein import into yeast mitochondria is inhibited by antibodies raised against 45-Kd proteins of the outer membrane. EMBO J. 6, 2109–2115.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Palmer, J.D. and Shields, C.R. (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature (London) 307, 437–440.CrossRefGoogle Scholar
  18. Pedersen, P.L. and Carafoli, E. (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. TIBS 12, 146–150.Google Scholar
  19. Rottmann, W.H., Brears, T., Hodge, T.P. and Lonsdale, D.M. (1987) A mitochondrial gene is lost via homologous recombination during reversion of CMS T maize to fertility. EMBO J. 6, 1541–1546.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Schuster, W., Hiesel, R., Isaac, P.G., Leaver, C.J. and Brennicke, A. (1986) Transcript termini of messenger RNAs in higher plant mitochondria. Nucleic Acids Res. 14, 5943–5954.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Small, I.D., Isaac, P.G. and Leaver, C.J. (1987) Stoichiometric differences in DNA molecules containing the atp A gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J. 6, 865–869.PubMedPubMedCentralCrossRefGoogle Scholar
  22. van Loon, A.P.G.M. and Schatz, G. (1987) Transport of proteins to the mitochondrial intermembrane space: the `sorting’ domain of the cytochrome C1 presequence is a stop-transfer sequence specific for the inner mitochondrial membrane. EMBO J. 6, 2441–2448.PubMedPubMedCentralCrossRefGoogle Scholar
  23. van Loon, A.P.G.M., Brändli, A.W., Pesold-Hurt, B., Blake, D. and Schatz, G. (1987) Transport of proteins to the mitochondrial intermembrane space: the `matrix targeting’ and the `sorting’ domains in the cytochrome C1 presequence. EMBO J. 6, 2433–2439.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1988

Authors and Affiliations

  • Donald Grierson
    • 1
  • Simon N. Covey
    • 2
  1. 1.Department of Physiology and Environmental ScienceUniversity of NottinghamUK
  2. 2.John Innes Institute, AFRC Institute of Plant Science ResearchNorwichUK

Personalised recommendations