A Normal Mode Study of Wobble and Nutation

  • Martin L. Smith
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 78)

Abstract

The observed eigenperiod of the Chandler Wobble is about 435.2 sidereal days while the theoretical eigenperiod of a rigid body having the same composition and geometry as the Earth is about 305 days. The attempt to reconcile these two numbers has led scientists to study theoretically the free wobble and nutation of various classes of rotating bodies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahlen, F. A.: 1976, The passive influence of the oceans upon the rotation of the Earth, Geophys. J. R. astr. Soc. 46, 363–406.MATHCrossRefGoogle Scholar
  2. Hough, S. S.: 1895, The oscillations of a rotating ellipsoidal shell containing fluid, Phil. Trans. R. Soc. Lond. A 186, 469.ADSMATHCrossRefGoogle Scholar
  3. Hough, S. S.: 1896, The rotation of an elastic spheroid, Phil. Trans. R. Soc. Lond. A 189b, 319.ADSGoogle Scholar
  4. Jeffreys, H.: 1959, The Earth, 4th ed. (Cambridge Univ. Press).Google Scholar
  5. Jeffreys, H. and Vicente, R. O.: 1957a, The theory of nutation and the variation of latitude, Mon. Not. R. astr. Soc. 117, 142–161.MathSciNetADSMATHGoogle Scholar
  6. Jeffreys, H. and Vicente, R. O.: 1957b, The theory of nutation and the variation of latitude: The Roche model core, Mon. Not. R. astr. Soc. 117, 162–173.MathSciNetADSMATHGoogle Scholar
  7. Larmor, J.: 1909, The relation of the Earth’s free precessional nutation to its resistance against tidal deformation, Proc. R. Soc. Lond. A 82, 89–96.ADSMATHCrossRefGoogle Scholar
  8. Love, A. E. H.: 1909, The yielding of the Earth to disturbing forces, Proc. R. Soc. Lond. A 82, 73–88.ADSMATHCrossRefGoogle Scholar
  9. Molodensky, M. S.: 1961, The theory of nutation and diurnal Earth tides, Comm. Obs. R. Belgique 288, 25–56.Google Scholar
  10. Shen, P.-Y. and Mansinha, L.: 1976, Oscillation, nutation, and wobble of an elliptical rotating Earth with liquid outer core, Geophys. J. R. astr. Soc. 46, 467–496.ADSMATHCrossRefGoogle Scholar
  11. Smith, M. L.: 1974, The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical earth, Geophys. J. R. astr. Soc. 37, 491.MATHCrossRefGoogle Scholar
  12. Smith, M. L.: 1976, Translational inner core oscillations of a rotating, slightly elliptical earth, J. Geophys. Res. 81, 3055–3065.ADSCrossRefGoogle Scholar
  13. Smith, M. L.: 1977, Wobble and nutation of the Earth, Geophys. J. R. astr. Soc. 50, 103–140.ADSCrossRefGoogle Scholar
  14. Wilson, C. R. and Haubrich, R. A.: 1976, Meteorological excitation of the Earth’s wobble, Geophys. J. R. astr. Soc. 46, 707–743.ADSCrossRefGoogle Scholar

Copyright information

© IAU 1980

Authors and Affiliations

  • Martin L. Smith
    • 1
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of Colorado/NOAABoulderUSA

Personalised recommendations