Advertisement

Anti-inflammation in spontaneously arising animal cancers

  • S. Normann
  • M. Schardt
  • E. Sorkin
Part of the Inflammation: Mechanisms and Treatment book series (FTIN, volume 4)

Abstract

Animals bearing transplanted cancers have defective monocyte accumulation both in the primary tumour and at distant sites 1–5. Activated macrophages possess anti-tumour effector activity6–9. Consequently, an antiinflammatory effect which alters the ratio of macrophages to tumour cells may interfere with host resistance and contribute to progressive cancer growth.

Keywords

Murine Leukemia Virus Macrophage Response Acute Lymphocytic Leukaemia Tumour Appearance Lymph Node Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, I. D., Zbar, B. and Rapp, H.J. (1972). Impaired inflammatory response in tumor-bearing Guinea Pigs. J. Natl. Cancer Inst. 49, 1641PubMedGoogle Scholar
  2. 2.
    Normann, S.J. and Sorkin, E. (1976). Cell-specific defect in monocyte function during tumor growth. J. Natl Cancer Inst., 57, 135Google Scholar
  3. 3.
    Normann, S.J. and Schardt, M. (1978). A cancer related macrophage dysfunction in inflamed tissues. J. Reticuloendothelial Soc., 24, 147Google Scholar
  4. 4.
    Normann, S.J. and Cornelius, J. (1978). Concurrent depression of tumor macrophage infiltration and systemic inflammation by progressive cancer growth. Cancer Res., 38, 3453PubMedGoogle Scholar
  5. 5.
    Snyderman, R., Pike, M. C., Blaylock, B.L. et al. (1976). Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J. Immunol., 116, 585PubMedGoogle Scholar
  6. 6.
    Stewart, C. C., Adles, C. and Hibbs, J. (1978). Cloned macrophages can be induced to kill tumor cells. J. Reticuloendothelial Soc., 24, 107Google Scholar
  7. 7.
    Hibbs, J. B. Jr. (1976). Role of activated macrophages in nonspecific resistance to neoplasia. J. Reticuloendothelial Soc, 20, 223Google Scholar
  8. 8.
    Hibbs, J. B. Jr., Taintor, R. R., Chapman, H. A. et al. (1977). Macrophage tumor killing: influence of the local environment. Science, 197,Google Scholar
  9. 9.
    Hibbs, J. B. Jr. (1976). The macrophage as a tumoricidal effector cell: Areview of in vivo and in vitro studies on the mechanism of the activated macrophage non-specific cytotoxic reaction. In Fink, Mary A. (ed.) The Macrophage in Neoplasia, p. 83. (New York: Academic Press)Google Scholar
  10. 10.
    Eccles, S.A., Bandlow, G. and Alexander, P. (1976). Monocytosis associated with the growth of transplanted syngeneic rat sarcomata differing in immunogenicity. Br. J. Cancer, 34, 20PubMedCrossRefGoogle Scholar
  11. 11.
    Riley, V. (1968). Lactate dehydrogenase in the normal and malignant state in mice and the influence of a benign enzyme-elevating virus. InBush, H. (ed.) Methodsin Cancer Research, Vol. 4, pp.493–618. (New York: Academic Press)Google Scholar
  12. 12.
    Ryan, W. L. (1974). Erronous interpretation of valid experimental observations through interference by the LDH Virus. J. Natl. Cancer Inst., 52, 1673Google Scholar
  13. 13.
    Normann, S.J. and Schardt, M. (1978). A macrophage inflammation test using subcutaneous nitrocellulose filters. J. Reticuloendothelial Soc., 23, 153Google Scholar
  14. 14.
    Elder, J. H., Gautsch, J. W., Jensen, F. C. et al. (1977). Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc. Natl. Acad. Sci. (USA), 74, 4676CrossRefGoogle Scholar
  15. 15.
    Rowe, W. P. and Piecus, T. (1972). Quantitative studies of naturally occuring murine leukemia virus infection of AKR mice. J. Exp. Med., 135, 429PubMedCrossRefGoogle Scholar
  16. 16.
    Hartley, J. W., Wolford, N. K., Old, L.J. and Rowe, W. P. (1977). A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc. Natl. Acad. Sci. (USA), 74, 789CrossRefGoogle Scholar
  17. 17.
    Siegler, R. and Rich, M. A. (1963). Unilateral histogenesis of AKR thymic lymphoma. Cancer Res., 23, 1669PubMedGoogle Scholar
  18. 18.
    McEndy, D. P., Boon, M. C. and Furth, J. (1944). On the role ofthymus, spleen, and gonads in the development of leukemia in a high leukemia stock of mice. Cancer Res., 4, 377Google Scholar
  19. 19.
    Prehn, R. T. (1963). Function of depressed immunologic reactivity during carcinogenesis. J. Natl. Cancer Inst. 31, 791PubMedGoogle Scholar
  20. 20.
    Bartlett, G. L. (1972). Effect of host immunity on the antigenic strength of primary tumours. J. Natl. Cancer Inst. 49, 493PubMedGoogle Scholar
  21. 21.
    Pike, M. C. and Snyderman, R. (1976). Depression of macrophage function by a factor produced by neoplasms: A mechanism for abrogration of immune surveillance. J. Immunol., 121, 1243Google Scholar
  22. 22.
    Hibbs, J.B. Jr., Chapman, H.A. Jr., and Weinberg, J.B. (1978). The macrophage as an antineoplastic surveillance cell: Biological perspectives. J. Reticuloendothelial Soc., 24, 549Google Scholar
  23. 23.
    Normann, S. J., Schandt, M. and Sorkin, E. (1979). Anti-inflammatory effect of spontaneous lymphoma in SJL/J mice. J. Natl. Cancer Inst., 63, 825PubMedGoogle Scholar
  24. 24.
    Normann, S. J., Schardt, M. and Sorkin, E. (1979). Cancer progression and monocyte inflammatory dysfunction: Relationship to tumor excision and metastasis. Int. J. Cancer 23, 110PubMedCrossRefGoogle Scholar
  25. 25.
    Stevenson, M. M., Meltzer, M. S. and Steinberg, G. (1979). Alteration of macrophage function in mice with transplantable tumours: Evidence for virus-induced changes. Fed. Proc, 38, 1094Google Scholar
  26. 26.
    Gianciolo, G. J., Thiel, H. J., Bolognesi, D.P., and Snyderman, R. (1979). Macrophage accumulation inhibited by extracts of murine leukemia viruses (MLV). Fed. Proc, 38, 1364Google Scholar
  27. 27.
    Eccles, S.A. (1977). Studies on the effect of rat sarcomata on the migration of mononuclear phagocytes in vitro and in vivo. In James, K., McBride, B. and Stuart, A. (eds.) The Macrophage and Cancer, pp. 308–320. (Edinburgh: Econoprint)Google Scholar
  28. 28.
    Snyderman, R. and Pike, M. C. (1976). An inhibitor of macrophage Chemotaxis produced by neoplasms. Science, 192, 370PubMedCrossRefGoogle Scholar
  29. 29.
    Normann, S. J. (1978). Tumor cell threshold required for suppression of macrophage inflammation. J. Natl. Cancer Inst., 60, 1091PubMedGoogle Scholar
  30. 30.
    Normann, S.J. and Sorkin, E. (1977). Inhibition of macrophage Chemotaxis by neoplastic and other rapidly proliferating cells in vitro. Cancer Res., 37, 705PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • S. Normann
    • 1
  • M. Schardt
    • 2
  • E. Sorkin
    • 2
  1. 1.USA
  2. 2.Switzerland

Personalised recommendations