Advertisement

Glutathione in erythrocytes: a parameter of change in disease activity and response to drugs in rheumatoid arthritis

  • E. Munthe
  • E. Kåss
  • E. Jellum
Part of the Inflammation: Mechanisms and Treatment book series (FTIN, volume 4)

Abstract

Several thiols have been shown to have anti-rheumatic activity. Rheumatoid factor molecules are split in vitro by the thiol penicillamine. This was the rationale behind the use of penicillamine in the treatment of rheumatoid arthritis (RA)1. Later studies showed, however, that this mechanism did not operate in vivo, and it is still unknown how penicillamine works in RA. Other thiols and anti-oxidants, for example, the vitamin B6 derivatives 5-thiopyridoxine2 and its disulphide pyrithioxine3, and also thiola (thiopronine or 2-mercapto-propionyl glycine)4,5 are all found effective as slow-acting, ‘second-line’ anti-rheumatic drugs. The immunopotentiating drug levam-isole has also an anti-oxidant effect, probably through a sulphydryl metabolite6. Gold salts used in the treatment of RA are usually given as thio-compounds7. It has also been claimed that the action of chloroquine in RA is due to interference with mercaptides8. No convincing relation between a known biological effect of these drugs and clinical response to them in RA has yet been demonstrated.

Keywords

Rheumatoid Arth Antirheumatic Drug Active Rheumatoid Arth Gold Salt Sulphydryl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaffe, I. A. (1976). Penicillamine treatment of rheumatoid arthritis — rationale, pattern of clinical response, and clinical pharmacology and toxicology. In Munthe, E. (ed.) Penicillamine Research in Rheumatoid Disease. (Norway: Fabritius/MSD)Google Scholar
  2. 2.
    Jaffe, I.A. and Huskisson, E. C. (1979). 5-Thiopyridoxine in rheumatoid arthritis. Abstract No. 216, W10, IXth European Congress Rheum., Wiesbaden, F.D.R. (2–8/9), 60Google Scholar
  3. 3.
    Camus, J.P., Massias, P., Chaouat, Y., Lechewallier, P.-L., Crouzet, J. and Prier, A. (1979). Pyrithioxine in rheumatoid arthritis — a pluricentric trial on 150 patients. Abstract 171. W7 IXth European Congress Rheum., Wiesbaden, F.D.R. (2–8/9), 52Google Scholar
  4. 4.
    Pasero, G., Ciompi, M.L., Barbieri, P. and Mazzoni, M. R. (1979). Thiopronine therapy in rheumatoid arthritis. Abstract 143, W7, IXth European Congress Rheum., Wiesbaden, F.D.R. (2–8/9), 47Google Scholar
  5. 5.
    Amor, B., Mery, C. and de Gery, A. (1979). Tiopronine — a new long acting drug in R.A. Abstract 170. W7 IXth European Congress Rheum., Wiesbaden, F.D.R. (2–8/9), 52Google Scholar
  6. 6.
    Sree Kumar, K., Chirigos, M. A. and Weiss, J. F. (1979). Protection of rat liver microsomes from NADPH-, ascorbate-, and X-irradiation — induced lipid peroxidation by levamisole. Int. J. Immunopharmacol., 1, 85CrossRefGoogle Scholar
  7. 7.
    Jellum, E., Munthe, E., Guidai, G. and Aaseth, J. (1979). Gold and thiol compounds in the treatment of rheumatoid arthritis. Scand. J. Rheumatol. Suppl., 28, 28PubMedCrossRefGoogle Scholar
  8. 8.
    Gerber, D. A. (1964). Effect of chloroquine on the sulphydryl group and the denaturation of bovine serum albumin. Arthritis Rheum., 7,193PubMedCrossRefGoogle Scholar
  9. 9.
    Lorber, A., Bovy, R. and Chang, C. (1971). Sulphydryl deficiency in connective tissue disorders: Correlation with disease activity and protein alternations. Metabolism, 20,446PubMedCrossRefGoogle Scholar
  10. 10.
    Haataja, M. (1975). Evaluation of the activity of rheumatoid arthritis. A comparative study on clinical symptoms and laboratory tests with special reference to serum sulphydryl groups. Scand. J. Rheumatol Suppl. 4, 7CrossRefGoogle Scholar
  11. 11.
    Haataja, M., Nissilä, M. and Ruutsalo, Helka-Marjatta (1978). Serum sulphydryl levels in rheumatoid patients treated with gold thiomalate and penicillamine. Scand. J. Rheumatol., 7,212PubMedCrossRefGoogle Scholar
  12. 12.
    Pavelka, K., Susta, A. and Sobeslavsky, C. (1971). A contribution to the mechanism of action of D-penicillamine in the treatments of rheumatoid arthritis. Müller, W., Har-werth, H.-G. and Fehr, K. (ed.) Rheum. Arthritis, p. 665. (Basle: Colloquia Geigy)Google Scholar
  13. 13.
    Hall, N. D. and Gillan, A. H. (1979). Effects of antirheumatic drugs on protein sulphydryl reactivity of human serum. J. Pharm. Pharmacol., 31, 676PubMedCrossRefGoogle Scholar
  14. 14.
    Larsen, B. and Bent-Hansen, K. (1957). Changes in serum sulphydryl and serum glycoprotein in rheumatoid arthritis during treatment with adrenocortical steroids. Scand. J. Clin. Lab. Invest., 9,89PubMedCrossRefGoogle Scholar
  15. 15.
    Chayen, J., Bitensky, L., Butcher, R. G. and Poulter, L. W. (1969). Redox control of lyso-somes in human synovia. Nature (London), 222,281Google Scholar
  16. 16.
    Chayen, J., Bitensky, L., Butcher, R. G. and Cashman, B. (1973). The effect of experimentally induced redox changes on human rheumatoid and non-rheumatoid synovial tissue in vitro. Beitr. Path., 149,127CrossRefGoogle Scholar
  17. 17.
    Tietze, S. (1969). Enzymatic method for quantitative determination of nanogram amounts of total unoxidized glutathione: application to mammalian blood and other tissues. Analyt. Biochem., 27,502PubMedCrossRefGoogle Scholar
  18. 18.
    Munthe, E., Guidai, G. and Jellum, E. (1979). Effect of slow-acting antirheumatic drugs on the intracellular glutathione level in rheumatoid arthritis. Abstract 178, W7, IXth European Congress Rheum., Wiesbaden, F.D.R. (2–8/9), 53Google Scholar
  19. 19.
    Munthe, E., Guidai, G. and Jellum, E. (1979). Increased intracellular glutathione during penicillamine treatment for rheumatic arthritis. Lancet, 2,1126PubMedCrossRefGoogle Scholar
  20. 20.
    Christophersen, B. O. (1968). The inhibitory effect of reduced glutathione on the lipid peroxidation of the microsomal fraction and mitochondria. Biochem. J., 106, 515PubMedGoogle Scholar
  21. 21.
    Marstein, S., Jellum, E., Halpern, B., Eldjarn, L. and Petty, T.L. (1976). Biochemical studies of erythrocytes in a patient with pyroglutamic acidemia (5-oxoprolinemia). New Engl. J. Med., 295,406CrossRefGoogle Scholar
  22. 22.
    Boxer, L. A., Oliver, J.M., Spielberg, S.P., Allen, J.M. and Schulman, J.D. (1979). Protection of granulocytes by vitamin E in glutathione synthetase deficiency. New Engl. J. Med., 301,901PubMedCrossRefGoogle Scholar
  23. 23.
    Tornelli, M. V., Franzone, J. and Natale, T. (1980). Interference of antioxidants with prostaglandin biosynthesis. This volume, Chap. 46Google Scholar
  24. 24.
    Lands, W.,Lee, R. and Smith, W. (1971). Factors regulating the biosynthesis of various prostaglandins. In Ramwell P. and Shaw J. (eds.) Prostaglandins. Ann. N.Y. Acad. Sci., 180, 107Google Scholar
  25. 25.
    Mowat, A.G. (1971). Hematologic abnormalities in rheumatoid arthritis. Semi. Arthritis Rheum., 1,195CrossRefGoogle Scholar
  26. 26.
    Bragt, P. C., Bransberg, J.I. and Bonta, I. L. (1979). Depletion of hepatic antioxidants during granulomatous inflammation in the rat and local anti-inflammatory effects of free radical scavengers. Agents Actions Suppl. (In press)Google Scholar
  27. 27.
    Sköldstam, L., Larsson, L. and Lindström, F. D. (1979). Effects of fasting and lacto-vegetarian diet on rheumatoid arthritis. Scand. J. Rheumatol., 8, 249PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • E. Munthe
    • 1
  • E. Kåss
    • 1
  • E. Jellum
    • 1
  1. 1.Norway

Personalised recommendations