Effects of Hindbrain L-Glutamic Acid Application on Gastrointestinal Motor Function in the Cat

  • H. S. OrmsbeeIII
  • F. C. Barone
  • D. M. Lombardi
  • L. C. McCartney


Electrical stimulation of the dorsal motor nucleus of the vagus nerve (DMV) generally increases circular muscle contractions in the stomach and small bowel [1,2]. The effect of DMV electrical stimulation on lower esophageal sphincter (LES) function recently has been determined [1]. A relatively large portion of the cat hindbrain, associated with the DMV, is involved in the control of LES pressure (LESP) [1].


Lower Esophageal Sphincter Hypertonic Saline Gastrointestinal Motility Lower Esophageal Sphincter Pressure Cervical Vagotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barone, F.C., Lombardi, D.M. and Ormsbee, H.S. III. (1983). Effects of hindbrain stimulation on lower esophageal sphincter pressure in the cat. Am. J. Physiol. Submitted.Google Scholar
  2. 2.
    Eliasson, S. (1953). Activation of gastric motility from the brainstem of the cat. Acta Physiol. Scand. 30: 199–214.Google Scholar
  3. 3.
    Siemers, E.M., Rea, M.A., Felten, D.L. and Aprison, M.H. (1982). Distribution and uptake of glycine, glutamate and 7-amino-butyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem. Res. 7: 455–468.Google Scholar
  4. 4.
    Dietrich, W.D., Lowry, 0.H. and Loewy, A.D. (1982). The distribution of glutamate, GABA and aspartate in the nucleus tractus solitarius of the cat. Brain Res. 237: 254–260.Google Scholar
  5. 5.
    Curtis, D.R. and Johnston, G.A.R. (1974). Amino acid transmitters in the mammalian central nervous system. In: Adrian, H. (ed.) Reviews of Physiology pp. 97–188 ( Berlin: Springer ).Google Scholar
  6. 6.
    Goodchild, A.K., Dampney, R.A.L. and Bandler, R. (1982). A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J. Neurosci. Meth. 6: 351–363.Google Scholar
  7. 7.
    Bass, P. and Wiley, J.N. (1972). Contractile force transducer for recording muscle activity in unanesthetized animals. J. Applied Physiol. 32: 567–570.Google Scholar
  8. 8.
    Dent, J. (1976). A new technique for continuous sphincter pressure measurement. Gastroenterology 71: 263–267.PubMedGoogle Scholar
  9. 9.
    Myers, R.D. (1971). Methods for chemical stimulation of the brain. In: Myers, R.D. (ed.) Methods in Psychobiology Vol. 1. pp. 247–280 ( New York: Academic Press ).Google Scholar
  10. 10.
    Myers, R.D. (1966). Injection of solutions into cerebral tissue: relation between volume and diffusion. Physiol. Behay. 1: 171–174.Google Scholar
  11. 11.
    Van Harreveld, A. and Fifkova, E. (1971). Light and electron microscope changes in central nervous tissue after electrophoretic injection of glutamate. Exp. Molec. Path. 14: 61–81.Google Scholar
  12. 12.
    Ranck, J.B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98: 417–440.PubMedCrossRefGoogle Scholar
  13. 13.
    Eyzaguirre „ C. and Kuffler, S.W. (1955). Processes of excitation in the dendrites and in the soma or single isolated sensory cells of the lobster and crayfish. J. Gen. Physiol. 39: 87–119.Google Scholar
  14. 14.
    McLennon, H. (1971). The pharmacology of inhibition of mitral cells in the olfactory bulb. Brain Res. 29: 177–184.CrossRefGoogle Scholar
  15. 15.
    Reynolds, R.P.E., El-Sharkawy, T.Y. and Diament, N.E. (1983). Role of central vagal innervation in feline lower esophageal sphincter function. Gastroenterology 84 (Part 2): 1285.Google Scholar
  16. 16.
    Clark, C.G. and Vane, J.R. (1961). The cardiac sphincter in the cat. Gut 2: 252–262.PubMedCrossRefGoogle Scholar
  17. 17.
    Rattan, S. and Goyal, R.K. (1974). Neural control of the lower esophageal sphincter: Influence of the vagus nerves. J. Clin. Invest. 54: 899–906.Google Scholar
  18. 18.
    Gonella, J. Niel, J.P. and Roman, C. (1977). Vagal control of lower esophageal sphincter motility in the cat. J. Physiol. 273: 647–664.PubMedGoogle Scholar
  19. 19.
    Reis, D.J., Granata, A.R., Perrone, M.H. and Talman, W.T. (1981). Evidence that glutamic acid is the neurotransmitter of baroreceptor afferents terminating in the nucleus tractus solitarius. J. Auton. Nerv. Sys. 3: 321–334.Google Scholar

Copyright information

© MTP Press Limited 1984

Authors and Affiliations

  • H. S. OrmsbeeIII
  • F. C. Barone
  • D. M. Lombardi
  • L. C. McCartney

There are no affiliations available

Personalised recommendations