Biochemical mechanisms of resistance to antimicrobial drugs

  • T. J. Franklin
  • G. A. Snow


Although the individual modes of resistance to antimicrobial drugs are very diverse, they can be grouped into a limited set of general mechanisms that account for most types of resistance encountered in medical practice. These include:
  1. 1.

    conversion of the active drug to an inactive derivative by enzyme(s) synthesized by the resistant cells;

  2. 2.
    loss of sensitivity of the drug target site as a result of:
    1. (a)

      covalent modification by enzyme activity in the resistant cells,

    2. (b)

      mutation(s) affecting the target, or

    3. (c)

      acquisition of genetic information encoding either a drug-resistant form of the target enzyme or overproduction of the drug-sensitive enzyme.

  3. 3.

    Removal of the drug from the cellular interior by drug efflux systems located in the cell envelope.



Clavulanic Acid Drug Efflux Efflux System Acetyl Coenzyme Ribosomal Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. Arthur, M., Reynolds, P. and Courvalin, P (1996). Glycopeptide resistance in enterococci. Trends Microbiol. 4, 401.CrossRefGoogle Scholar
  2. Bennett, P M. and Chopra, 1. (1993). Molecular basis of ß-lactamase induction in bacteria. Antimicrob. Agents Chemother. 37, 153.Google Scholar
  3. Borst, P and Ouellette, M. (1995). New mechanisms of drug resistance in parasitic protozoa. Ann. Rev. Microbiol. 49, 427.CrossRefGoogle Scholar
  4. Bush, K., Jacoby, G. A. and Medeiros, A. A. (1995). A functional classification scheme for ß-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211.Google Scholar
  5. Chopra, I. et al. (1997). The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother. 41, 497.Google Scholar
  6. Cole, S. T. (1994). Mycobacterium tuberculosis: drug resistance mechanisms. Trends Microbiol. 2, 411.CrossRefGoogle Scholar
  7. Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375.CrossRefGoogle Scholar
  8. Ghuysen, J.-M. et al. (1996). Pencillin and beyond: evolution, protein fold, multimodular polypeptides and multidomain complexes. Microb. Drug Resist. 2, 163.CrossRefGoogle Scholar
  9. Huovinen, P. et al. (1995). Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39, 279.Google Scholar
  10. Katz, R. A. and Skalka, A. M. (1994). The retroviral enzymes. Ann. Rev. Biochem. 63, 133.CrossRefGoogle Scholar
  11. Livermore, D. M. (1995). Bacterial resistance to car- bapenems. In Antimicrobial Resistance: A Crisis in Health Care (eds D. J. Jungkind et al.), Plenum Press, New York, p.35.Google Scholar
  12. Molla, A. et al. (1996). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Medicine 2, 760.CrossRefGoogle Scholar
  13. Murray, I. A. and Shaw, W V (1997). O-acetyl transferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 41,1.Google Scholar
  14. Park, J. T. (1996). The convergence of murein recycling research with ß-lactamase research. Microb. Drug Resist. 2, 105.CrossRefGoogle Scholar
  15. Paulsen, I. T, Brown, M. H. and Skurray, R. A. (1996). Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575.Google Scholar
  16. Payne, D. J. (1993). Metallo-ß-lactamases — a new therapeutic challenge. J. Med. Microbiol. 39, 93.CrossRefGoogle Scholar
  17. Richman, D. (1994). Drug resistance in viruses. Trends Microbiol. 2,401.CrossRefGoogle Scholar
  18. Roberts, M. C. (1996). Tetracycline resistance determinants; mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol. Rev. 19, 1.CrossRefGoogle Scholar
  19. Sanglard, D. et al. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378.Google Scholar
  20. Shaw, K. J. et al. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138.Google Scholar
  21. Spratt, B. G. (1994). Resistance to antibiotics mediated by target alterations. Science 264, 388.CrossRefGoogle Scholar
  22. Su, X.-Z. et al. (1997). Complex polymorphisms in a —330 kDa protein are linked to chloroquine-resist- ant R falciparum in Southeast Asia and Africa. Cell 91, 593.CrossRefGoogle Scholar
  23. Thanassi, D. G., Suh, G. S. B. and Nikaido, H. (1995). Role of outer membrane in efflux-mediated tetracycline resistance of Escherichia coli. J. Bacteriol. 177, 998.Google Scholar
  24. Van den Bossche, H., Marichal, P and Odds, F. C. (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393.CrossRefGoogle Scholar
  25. Weisblum, B. V (1995). Erythromycin resistance by ribo- some modification. Antimicrob. Agents Chemother. 39, 577.Google Scholar

Copyright information

© The Kluwer Academic Publishers 1998

Authors and Affiliations

  • T. J. Franklin
    • 1
  • G. A. Snow
    • 1
  1. 1.Zeneca PharmaceuticalsAlderley Park, Macclesfield, CheshireUK

Personalised recommendations