The Search for a Second Genesis of Life in Our Solar System

  • Christopher P. McKay


One of the key goals of Astrobiology is to search for another example of life. In the near term, Mars and Europa are the likely targets for a search for a second genesis. On Mars the search is likely to be conducted in the frozen permafrost. On Europa active life may be found in the ocean beneath the ice cover.


Dormant Cell Deinococcus Radiodurans Thermal Decay Martian Meteorite Martian Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cano R.J., and M.K. Borucki (1995) Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science 268, 1060–1064.ADSCrossRefGoogle Scholar
  2. Davis, W.L. and C.P. McKay (1996) Origins of life: A comparison of theories and application to Mars. Origins Life Evol. Biosph., 26, 61–73.ADSCrossRefGoogle Scholar
  3. Friedmann, E.I., J. Wierzchos, C. Ascaso, and M. Winklhofer (2001) Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin. Proc. Nat. Acad. Sci. 98, 2176–2181.ADSCrossRefGoogle Scholar
  4. Gilichinsky, D.A., E.A. Vorobyova, L.G. Erokhina, D.G. Fyordorov-Dayvdov, and N.R. Chaikovskaya (1992) Long-term preservation of microbial ecosystems in permafrost. Adv. Space Res. 12(4) 255–263.ADSCrossRefGoogle Scholar
  5. Greenberg, R., P. Geissler, B. Tufts, and G.V. Hoppa (2000) Habitability of Europa’s crust: The role of tidal-tectonic processes. J. Geophys. Res. 105, 17551–1756.ADSCrossRefGoogle Scholar
  6. Lehninger, A. L. (1975) Biochemistry. Worth, New York.Google Scholar
  7. Levin, G.V. and P.A. Straat (1981) A search for nonbiological explanation of the Viking labeled release life detection experiment, Icarus 45, 494–516.ADSCrossRefGoogle Scholar
  8. McKay, C. P. (1997) The search for life on Mars. Origins of Life and Evolution of the Biosphere 27:263–289.ADSCrossRefGoogle Scholar
  9. McKay, C.P. and W.L. Davis, (1991) Duration of liquid water habitats on early Mars, Icarus 90, 214–221.ADSCrossRefGoogle Scholar
  10. McKay, C.P., and S.S. Nedell (1988) Are there carbonate deposits in Valles Marineris, Mars?, Icarus 73, 142–148.ADSCrossRefGoogle Scholar
  11. McKay, D.S., E.K. Gibson, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clement, X.D.F. Chillier, C.R. Maechling, and R.N. Zare (1996) Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science 273, 924–930.ADSCrossRefGoogle Scholar
  12. McSween, H.Y. (1994) What have we learned about Mars from SNC meteorites. Meteoritics 29, 757–779.ADSCrossRefGoogle Scholar
  13. Minton, K.W. (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13 9–15.CrossRefGoogle Scholar
  14. Battista, J.R. (1997) Against all odds: The survival strategies of Deinococcus radiodurans, 51, 203–24.Google Scholar
  15. Mileikowsky, C, F.A. Cucinotta, J.W. Wilson, B. Gladman, G. Horneck, L. Lindegren, J. Melosh, H. Rickman (2000) Natural transfer of viable microbes in space. 1. From Mars to Earth and Earth to Mars. Icarus 145 391–427.ADSCrossRefGoogle Scholar
  16. Pappalardo, R. T.; MJ.S. Belton, H.H. Breneman, M.H. Carr, C.R. Chapman, G.C. Collins, T. Denk, S. Fagents, P.E. Geissler, B. Giese, R. Greeley, R. Greenberg, J.W. Head, P. Helfenstein, G. Hoppa, et al. (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104, 24,015–24,055.ADSCrossRefGoogle Scholar
  17. Rivkina, E.M., E.I. Friedmann, C.P. McKay, and D.A. Gilichinsky (2000) Metabolic activity of permafrost bacteria below the freezing point, Appl. Environ. Microbio. 66, 3230–3233.CrossRefGoogle Scholar
  18. Sleep, N.H. and K. Zahnle (1998) Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28,529–28,544.ADSCrossRefGoogle Scholar
  19. Thomas-Keprta, K.L., S.J. Clemett, D.A. Bazylinski, J.L. Kirschvink, D.S. McKay, S.J. Wentworth, H. Vali, E.K. Gibson, Jr., M.F. McKay, and C.S. Romanek (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proc. Nat. Acad. Sci. 98, 2164–2169.ADSCrossRefGoogle Scholar
  20. Vreeland, R.H., W.D. Rosenzweig and D.W. Powers (2000) Isolation of a 250 million year old bacterium from primary salt crystals. Nature 407, 897–900.ADSCrossRefGoogle Scholar
  21. Weiss B.P., J.L. Kirschvink, F.J. Baudenbacher, H. Vali, N.T. Peters, F.A. Macdonald, and J.P. Wikswo (2000) A Low Temperature Transfer of ALH84001 from Mars to Earth. Science 290, 791–795.ADSCrossRefGoogle Scholar
  22. Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–271.Google Scholar
  23. Yen, A.S., S.S. Kim, M.H. Hecht, M.S. Frant, and B. Murray (2000) Evidence That the Reactivity of the Martian Soil Is Due to Superoxide Ions. Science 289 1909–1912.ADSCrossRefGoogle Scholar
  24. Zent, A.P. and C.P. McKay (1994) The chemical reactivity of the martian soil and implications for future missions. Icarus 108, 146–157.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Christopher P. McKay
    • 1
  1. 1.Space Science DivisionNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations