Polymorphism in Carbons and Parent Materials

  • P. Delhaes
Chapter

Abstract

It has long been known that solid carbon can be found in various guises: besides the confirmation that the different forms of graphite and diamond are crystalline varieties of this element, new forms such as the carbynes the fullerenes and nanotubes, have recently been discovered. The cause of this rich polymorphism is analysed in the present review, and it will be shown that the propensity of carbon for forming different types of homopolar chemical bonds with variable coordination numbers which is also at the basis of classical orgmic chemistty (1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delhaes P. 1997, in Le Carbone dans tous ses étate, chapter 2, editors P. Bernier and S. Lefrmt (Gordon and Breach).Google Scholar
  2. 2.
    Atkins P.W. 1990, Physical Chemistry (fourth edition) Oxford Univenity Press.Google Scholar
  3. 3.
    Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. 1985, Nature 318, 162.CrossRefGoogle Scholar
  4. 4.
    Haddon R.C. 1992, Accounts of chemical research 25, 127.CrossRefGoogle Scholar
  5. 5.
    Bundy F.P., Basset W.A., Weathers M.S., Hemley R.J., Mao H.K., Goncharov A.F., 1996, Carbon 34, 141.CrossRefGoogle Scholar
  6. 6.
    Berman R., Simon F. 1955, Z. Elektrochem. 59, 333.Google Scholar
  7. 7.
    Van Theil M., Ree F.M. 1993, Phys. Rev. B 48, 3591.Google Scholar
  8. 8.
    Cohen M.L. 1994, Sol. St. Comm. 92, 45.CrossRefGoogle Scholar
  9. 9.
    Hoffmann R., Hughbanks T., Kertsesz M. 1983, J. Am. Chem. Soc. 105, 4831.CrossRefGoogle Scholar
  10. 10.
    Kudravtsev Y.P., Evsyukov S.E., Guseva M.B., Babaev V.G., Khvostov 1997, Chemise and Physics of Carbon 25, ed. P.A. Thrower (M. Dekker New-York) 25, 1–69.Google Scholar
  11. 11.
    Kastner J., Kuzmany H., Kavan L., Bousek F.P., Kurti J. 1995, Macroraolecules 28, 344.CrossRefGoogle Scholar
  12. 12.
    Heimann R.B., Kleiman J., Salansky N.M. 1984, Carbon 22, 147.CrossRefGoogle Scholar
  13. 13.
    Kavan L. 1998, Fullerenes and carbon based materials, 801 (P. Delhaes and H. Kuzmany editors).Google Scholar
  14. 14.
    Lagow R.J., Kampa J.J., Wei H.C., Battle S.L., Genge J.W., Laude D.A., Haiper C.J., Bau R., Stevens R.C., Haw J.F., Munson E. 1995, Science 267, 362.CrossRefGoogle Scholar
  15. 15.
    Palnichenko A.V., Tanuma S. 1996, J. Phys. Chem. Solids 57, 1163.CrossRefGoogle Scholar
  16. 16.
    Bacon G.E. 1948, Acta Cryst. 1, 337.CrossRefGoogle Scholar
  17. 17.
    Boehm H.P., Hoffmann V. 1995, Anorg. Allgem. Chem. 278, 58, 299.CrossRefGoogle Scholar
  18. 18.
    Dresselhaus M.S., Dresselhaus G., Saito G. 1998, World of Carbon I.Google Scholar
  19. 19.
    Tamor M.A., Hass K.C. 1990. J. Mater. Res. 5, 2273.CrossRefGoogle Scholar
  20. 20.
    Liu A.Y., Cohen M.L. 1992, Phys. Rev. B 45, 4579.Google Scholar
  21. 21.
    Yin M.T., Cohen M.L. 1983, Phys. Rev. Letters 50, 2006.CrossRefGoogle Scholar
  22. 22.
    Spear K.E., Phelps A.W., White W.B. 1990, J. Mater, Res. 5, 2277.CrossRefGoogle Scholar
  23. 23.
    Bundy F.P., Kasper J.S. 1967, J. of Chem. Phys. 46, 3437.CrossRefGoogle Scholar
  24. 24.
    Matyushenko N.N., Strel’nitskii V.E., Gusev V.A. 1979, JETP Letters 30, 199.Google Scholar
  25. 25.
    Palataik L.S., Guseva M.B., Babaev V.G., Savchenko N.F., Fal’ko I.I. 1984, Sov. Phys. JETP 60, 520.Google Scholar
  26. 26.
    Johnston R.L., Hoffmann R. 1989, J. Am. Chem. Soc. 111, 810.CrossRefGoogle Scholar
  27. 27.
    Scandolo S., Chiarotti G.L., Tosatti E. 1996, Phys. Rev. B 53, 5051.Google Scholar
  28. 28.
    Kräschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. 1990, Nature 347, 354.CrossRefGoogle Scholar
  29. 29.
    lijima S. 1991, Nature 354, 56.CrossRefGoogle Scholar
  30. 30.
    Ebbesen W. 1994, Annu. Rev. Mat. Sci. 24, 235.CrossRefGoogle Scholar
  31. 31.
    Schwarz H.A. 1890 Gesamunelte Mathematische Abhandlungen Springer-Verlag Ed.Google Scholar
  32. 32.
    Dresselhaus M.S., Dresselhaus G., Ecklund P.C. 1995, Science of fullerenes and carbon nanotubes (Academic Press).Google Scholar
  33. 33.
    Baker R.T.K., Harris P.S. 1978, Chemistry and Physics of Carbon 14, 8.Google Scholar
  34. 34.
    Thess A., Lee R., Nikolaev B., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G.E., Tomanek D., Fischer I.E., Smalley R.E. 1992, Nature 273, 483.Google Scholar
  35. 35.
    Sattler K. 1995, Carbon 33, 915.CrossRefGoogle Scholar
  36. 36.
    Ihara S., Itoh S. 1995, Carbon 33, 931.CrossRefGoogle Scholar
  37. 37.
    Ugate D. 1995, Carbon 33, 989.CrossRefGoogle Scholar
  38. 38.
    Lenosky T., Gonze X., Teter M., Elser V. 1992, 355, 333.Google Scholar
  39. 39.
    Huang M.Z., Ching W.Y., Lenosky T. 1993, Phys. Rev. B 47, 1593.Google Scholar
  40. 40.
    Odom T.W., Huang J.L., Kim P., Lieber M., 1998, Nature 391, 62CrossRefGoogle Scholar
  41. 41.
    Nunez-Regueiro M., Marques L., Hodeau J.L., Bethoux O. and Perroux M. 1995, Phys. Rev. Lett. 74, 278.CrossRefGoogle Scholar
  42. 42.
    Blank V.D., Buga S.G., Dubitsky G.A., Serebiyanaya, Popov M.Y., Sundqvist B. 1998, Carbon 36, 319.CrossRefGoogle Scholar
  43. 43.
    Wells A.F. 1977, Three dimensional nets and polyedra (Wiley Ed.).Google Scholar
  44. 44.
    Baughman R.H., Lui C. 1993, Synthetic Metals 55–57, 315.CrossRefGoogle Scholar
  45. 45.
    Gleiter R., Kratz D., 1993, Angew. Chem. M. Ed. Engl. 38, 842.CrossRefGoogle Scholar
  46. 46.
    Diederich F. 1994, Nature 369, 199.CrossRefGoogle Scholar
  47. 47.
    Baughman R.H., Eckhardt H., Kertesz M. 1987, J. Chem. Phys. 87, 6687.CrossRefGoogle Scholar
  48. 48.
    Mera K.M., Hoffmann R., Balaban A.J. 1997, J. Am. Chem. Soc. 109, 6742.Google Scholar
  49. 49.
    Bucknu M.J., Hoffmann R. J. Am. Chem. Soc. 116, 11456.Google Scholar
  50. 50.
    Marchand M. A. 1978, Chemistiy and Physics of Carbon 7, 155, editors P.L. Walker (Marcel Dekker).Google Scholar
  51. 51.
    Delhaes P., Carmona F. 1981, Chemistiy and Physics of Carbon 17, 89, editors P.L. Walker and P.A. Thrower (Marcel Dekker).Google Scholar
  52. 52.
    Robertson J., O’Reilly E.P. 1977, Phys. Rev. B 35, 2946.Google Scholar
  53. 53.
    Mc Kenzie D.R., Mc Phedran R.C., Savides N., Botten L.C. 1984, Philos. Magazine B 48, 341.Google Scholar
  54. 54.
    Bubenzer A., Dischler B., Brandt G., Koidl P. 1983, J. Appl. Phys. 54, 4590.CrossRefGoogle Scholar
  55. 55.
    Ricci M., Trinquecoste M. Auguste F., Canet R., Delhaes P., Guimon C., Pfister-Gulllouzo G., Nysten B., Issi J.P. 1993, J. Mat. Res. 8, 480.CrossRefGoogle Scholar
  56. 56.
    Endo K., Tatsumi T. 196, Appl. Phys. Lett. 68, 2864.Google Scholar
  57. 57.
    Aisenberg S., Chabot R. 1977, J. Appl Phys. 42, 2953.CrossRefGoogle Scholar
  58. 58.
    Angus J.C., Hayman C.C. 1988, Science 241, 913.CrossRefGoogle Scholar
  59. 59.
    Kakinoki J., Katada K., Hanawa T., Ino T. 1960, Acta Ctystallogr. 13, 171 and 13, 448.CrossRefGoogle Scholar
  60. 60.
    Weissmantel C., Bewilogna K., Dietrich D., Erler H.J., Klose S., Nowick W., Reisse G. 1980, Thin Sol. Films 72, 29.CrossRefGoogle Scholar
  61. 61.
    Kelires P.C. 1994, Phys. Rev. Lett. 73, 2460.CrossRefGoogle Scholar
  62. 62.
    Oberlin A., Bonamy S. 2000, World of Carbon Volume 1, Ch. 9, 199–220 Editor P. Delhaes, (Gordon and Breach).Google Scholar
  63. 63.
    Paillard V., Melinon P., Dupuis V., Perez J.P., Perez A. 1993, Phys. Rev. Lett. 71, 4170.CrossRefGoogle Scholar
  64. 64.
    Handschuh H., Gantefor G., Kessler B., Bechthold P.S., Eberhardt 1995, Phys. Rev. Lett. 74, 1095.CrossRefGoogle Scholar
  65. 65.
    Kawaguchi M. 1997, Advanced Materials 9, 615.CrossRefGoogle Scholar
  66. 66.
    Rand B. 2001, see Chapter 7 of this NATO-ASI book.Google Scholar
  67. 67.
    Kouvetakis J., Kmer R.B., Sattler M.L., Bartlett N., 1986, J. Chem. Soc, Chem. Comm. 1758.Google Scholar
  68. 68.
    Derre A., Filipozzi P., Peron F. 1993, J. de Physique IV C3, 195.Google Scholar
  69. 69.
    Ottaviani B., Derre A., Grivei E., Mahmoud O.A.M., Guimon M.F., Flandrois S., Delhaes P. 1998, J. Mat. Chem. 8, 197.CrossRefGoogle Scholar
  70. 70.
    Maya L., Cole D.R., Hagamann E.W. 1991, J. Amer. Ceram. Soc. 74, 1686.CrossRefGoogle Scholar
  71. 71.
    Ortega J., Sankey J.F. 1995. Phys. Rev. B 51, 2624.Google Scholar
  72. 72.
    LaFEmina J.P. 1990, J. Phys. Chem. 94, 4346.CrossRefGoogle Scholar
  73. 73.
    Corkill J.L., Liu A.Y., Cohen M.L. 1992, Phys. Rev. B 45, 12, 746.Google Scholar
  74. 74.
    Liu A.Y., Cohen M.L. 1990, Phys. Rev. B 41, 10, 727.Google Scholar
  75. 75.
    Zerr A., Miehe G., Serghiou G., Schwarz M., Kroke E., Riedel R., Fuess H., Kroll P., Bochler R. 1999, Nature 400, 340.CrossRefGoogle Scholar
  76. 76.
    Trinquecoste M., Daguerre E., Couzin L., Amiell J., Derre A., Delhaes P., Ion L., Held B. 1999, Carbon 37, 457.CrossRefGoogle Scholar
  77. 77.
    Riviere J.P., Texier D., Delafond J., Jaonen M., Mathe E.L., Chaumont J. 1995, Mat. Lett. 22, 115.CrossRefGoogle Scholar
  78. 78.
    Bowser R.L., Jeski D.A., George T.F. 1992, Inorg. Chem. 31, 154.CrossRefGoogle Scholar
  79. 79.
    Miyamoto Y., Rubio A., Cohen M.L., Louie S.G. 1994, Phys. Rev. B 50, 4976.Google Scholar
  80. 80.
    Stephman O., Ajaym P.M., Colliex C., Redlich P., Lambert J.M., Bemier P., Lefin P. 1994, Science 266, 1683.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • P. Delhaes
    • 1
  1. 1.Centre de Recherche Paul Pascal, CNRSUniversité Bordeaux IPessac(France)

Personalised recommendations