Fundamental Investigations and Industrial Applications of Magnetostriction

  • M. Hirscher
  • S. F. Fischer
  • T. Reininger
Part of the NATO Science Series book series (NAII, volume 5)


So far only bulk materials are used for technological applications of magnetostriction. For applications in micro-systems technology magnetostrictive films have to be developed, which show excellent soft-magnetic properties combined with giant magnetostriction. Amorphous Tb-DyFe films, which are prepared possessing an in plane or transverse magnetic anisotropy, show excellent soft-magnetic properties combined with giant magnetostriction. However, for technical applications the major drawback is the low Curie temperature which is typically around 400 K. To increase the Curie temperature and simultaneously achieve good soft-magnetic properties as well as giant magnetostriction the preparation of crystalline films with nanometer-sized grains is necessary. Terfenol-D-like films with additives of Zr or Mo were prepared by ion beam sputtering and different heat treatments were applied to investigate the crystallization behaviour. Furthermore, nanometer-scaled multilayers with Nb interlayers were prepared. This multilayer structure is suitable to inhibit grain growth and hence further decreases the average grain size. The resulting nanocrystalline microstructure leads to small coercive fields and high Curie temperatures. In addition, protective layers were investigated in order to avoid oxidation during the heat treatments for crystallization. The results will be discussed with respect to possible applications in micro-system technology. For industrial automation the actuation with compressed air plays an important role since pneumatics has without doubt always been an ideal modular system for all kinds of applications in almost every field of technology. Owing to its high modularity pneumatics is constantly complemented and expanded by new technological developments, such as proportional pneumatics and servo-pneumatic actuators. Beside developments to evaluate the possibilities to use solid state actuators for miniaturized valves, already extremely accurate contactless displacement sensors on the ba- sis of magnetostrictive effects are used for applications mentioned above. These magnetostrictive displacement sensors are detecting the propagation delay time of an ultrasonic wave in a mag- netostrictive tube created by the interchange of a longitudinal and a circular magnetic field, the so-called Wiedemann effect. The principle of the Wiedemann effect will be explained and recent developments in utilizing this effect for highly sensitive position sensors will be shown.


Magnetic Anisotropy Lave Phase Film Plane High Curie Temperature Perpendicular Magnetic Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flik, G., Schnell, M., Schatz, F., and Hirscher, M. (1994) Giant Magnetostrictive Thin Film Transducers for Microsystems, in H. Borgmann and K. Lenz (eds.), Actuator 1994, AXON Technologie Consult GmbH, Bremen, pp. 232–235.Google Scholar
  2. 2.
    Koeninger, V., Matsumura, Y., Uchida, H.H., and Uchida, H. (1994) Surface Acoustic Waves on Thin Films of Giant Magnetostrictive Alloys, J. Alloys and Compounds 211/212, 581–584.CrossRefGoogle Scholar
  3. 3.
    Honda, T., Arai, K.I., and Yamaguchi, M. (1994) Fabrication of Magnetostrictive Actuators Using Rare-Earth (Tb,Sm)-Fe Thin Films,J. Appl Phys. 76, 6994–6999.ADSCrossRefGoogle Scholar
  4. 4.
    Schatz, F., Hirscher, M., Flik, G., and Kronmüller, H. (1993) Magnetic Properties of Giant-Magnetostrictive TbDyFe Films, phys. stat. sol. (a) 137, 197–205.ADSCrossRefGoogle Scholar
  5. 5.
    Quandt, E., Gerlach, B., and Seemann, K. (1994) Preparation and Applications of Magne-tostrictive Thin Films, J. Appl. Phys. 76, 7000–7002.ADSCrossRefGoogle Scholar
  6. 6.
    Miyazaki, T., Saito, T., and Fujino, Y. (1997) Magnetostrictive Properties of Sputtered Binary Tb-Fe and Pseudo-Binary (Tb-Dy)-Fe Alloy Films, J. Magn. magn. Mater. 171, 320–328.ADSCrossRefGoogle Scholar
  7. 7.
    Hellman, F. and Gyorgy, E.M. (1992) Growth-Induced Magnetic Anisotropy in Amorphous Tb-Fe, Phys. Rev. Lett. 68, 1391–1394.ADSCrossRefGoogle Scholar
  8. 8.
    Schatz, F., Hirscher, M., Schnell, M., Flik, G., and Kronmüller, H. (1994) Magnetic Anisotropy and Giant Magnetostriction of Amorphous TbDyFe Films, J. Appl. Phys. 76, 5380–5382.ADSCrossRefGoogle Scholar
  9. 9.
    Chikazumi, S. (1964) Physics of Magnetism, John Wiley & Sons, Inc., New York London Sydney.Google Scholar
  10. 10.
    Cochrane, R.W., Harris, R., and Zuckermann, M.J. (1978) The Role of Structure in the Magnetic Properties of Amorphous Alloys, Phys. reports. 48, 1–63.ADSCrossRefGoogle Scholar
  11. 11.
    Duc, N.H., Mackay, K., Betz, J., and Givord, D. (1996) Giant Magnetostriction in Amorphous (Tb1-xDyx)(Fe0.45Co0.55)y Films, J. Appl. Phys. 79, 973–977.ADSCrossRefGoogle Scholar
  12. 12.
    Quandt, E., Ludwig, A., Lord, D.G., and Fraunce, C.A. (1998) Magnetic Properties and Mi-crostructure of Giant Magnetostrictive TbFe/FeCo multilayers, J. Appl. Phys. 83, 7267–7269.ADSCrossRefGoogle Scholar
  13. 13.
    Quandt, E. and Ludwig, A. (1999) Giant Magnetostrictive multilayers, J. Appl. Phys. 85, 6232–6237.ADSCrossRefGoogle Scholar
  14. 14.
    Ried, K., Schnell, M., Schatz, F., Hirscher, M., Ludescher, B., Sigle, W., and Kronmüller, H. (1998)Crystallization Behaviour and Magnetic Properties of Magnetostrictive TbDyFe Films, phys. stat. sol. (a) 167, 195–208.ADSCrossRefGoogle Scholar
  15. 15.
    Herzer, G. (1990) Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets, IEEE Trans. Magn. 26, 1397–1402.ADSCrossRefGoogle Scholar
  16. 16.
    Herzer, G. (1997) Nanocrystalline Soft Magnetic Alloys, in K.H.J. Buschow (ed.), Handbook of Magnetic Materials Vol.10, Elsevier Science, Amsterdam, pp. 415–462.Google Scholar
  17. 17.
    Kataoka, N., Hosokawa, M., Inoue, A., and Masumoto, T. (1989) Magnetic Properties of Fe-Based Binary Crystalline Alloys Produced by Vapor Quenching, Jpn. J. Appl. Phys. 28, 462–464.ADSCrossRefGoogle Scholar
  18. 18.
    Kikuchi, S., Tanaka, T., Sugimoto, S., Okada, M., Homma, M., and Arai, K. (1993) Crystal-lization to Fine TbFe2 Grains and Magnetic Properties in Rapidly Quenched Fe-Tb-B Alloys, IEEE Trans. J. Magn. Jpn. 8, 807–811.CrossRefGoogle Scholar
  19. 19.
    Winzek, B., Hirscher, M., and Kronmüller, H. (1999) Crystallization of Sputter-Deposited Giant-Magnetostrictive TbDyFeM (M= Mo, Zr) Films and Multilayers, J. Alloys and Compounds 283, 78–82.CrossRefGoogle Scholar
  20. 20.
    Fischer, S.F., Kelsch, M., and Kronmüller, H. (1999) Optimization of Magnetostriction, Coercive Field and Magnetic Transition Temperature in Nanocrystalline TbDyFe + Zr/Nb Multilayers, J. Magn. magn. Mater. 195, 545–554.ADSCrossRefGoogle Scholar
  21. 21.
    Farber, P. and Kronmüller, H. (2000) Crystallization Behaviour and Magnetic Properties of Highly Magnetostrictive Fe-Tb-Dy Thin Films, J. Magn. magn. Mater. 214, 159–166.ADSCrossRefGoogle Scholar
  22. 22.
    Neumann, R., Leyser, J., and Post, P. (2000) Simulationsgestützte Entwicklung eines servop-neumatisch angetriebenen Prallelroboters, in K. Großmann and H. Wiemer (eds.), Simulation im Maschienenbau, SIM 2000, Eigenverlag, Dresden, pp. 519–537.Google Scholar
  23. 23.
    Pulido, E., del Real, R.P., Conde, F., Rivero, G., Vazquez,6M., Ascasibar, E. and Hernando, A. (1991) Amorphous Wire Magnetic Filed and D.C. Current Sensor Based on the Inverse Wiedemann Effect, IEEE Trans. Magn. 27, 5241–5243.ADSCrossRefGoogle Scholar
  24. 24.
    Hristoforou, E. and Niarchos, D. (1992) Amorphous Wires in Displacement Sensing Tech-niques, J. Magn. Mag. Mat. 116, 177–188.ADSCrossRefGoogle Scholar
  25. 25.
    Reininger, T., Kronmüller, H., Gomezpolo, C, and Vazquez, M. (1993) Magnetic Domain Observation in Amorphous Wires, J. Appl Phys. 73, 5357–5359.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. Hirscher
    • 1
  • S. F. Fischer
    • 1
  • T. Reininger
    • 2
  1. 1.Max-Planck-Institutfür MetallforschungStuttgartGermany
  2. 2.Festo AG&Co.EsslingenGermany

Personalised recommendations