Advertisement

Lyapunov Exponents and Synchronization of Cellular Automata

  • Franco Bagnoli
  • Raul Rechtman
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 6)

Abstract

In these notes we discuss the concept of Lyapunov exponents of cellular automata (CA). We also present a synchronization mechanism for CA. We begin with an introduction to CA, introduce the concept of Boolean derivative and show that any CA has a finite expansion in terms of the Boolean derivatives. The Lyapunov exponents are defined as the rate of exponential growth of the linear part of this expansion using a suitable norm. We then present a simple mechanism for the synchronization of CA and apply it to totalistic one-dimensional CA. The CA with a nonzero synchronization threshold exhibit complex nonperiodic space time patterns and vice versa. This synchronization transition is related to directed percolation. The synchronization threshold is strongly correlated to the maximum Lyapunov exponent and we propose approximate relations between these quantities.

Keywords

Lyapunov Exponent Cellular Automaton Cellular Automaton Maximum Lyapunov Exponent Directed Percolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves, A.S. ed.(1991) Discrete Models of Fluid Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ.zbMATHGoogle Scholar
  2. 2.
    Bagnoli, F. (1992) Boolean Derivatives and Computation of Cellular Automata, Int. J. Mod. Phys. C, 3, p. 307.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bagnoli, F., Baroni, L. and Palmerini, P. (1999) Synchronization and Directed Percolation in Coupled Map Lattices, Phys. Rev. E, 59, pp. 409–416.CrossRefGoogle Scholar
  4. 4.
    Bagnoli, F., Palmerini, P. and Rechtman, R. (1997) Algorithmic Mapping from Criticality to Self-Organized Criticality, Phys. Rev. E, 55, p. 3970.CrossRefGoogle Scholar
  5. 5.
    Bagnoli, F., Rechtman, R. and Ruffo, S. (1992) Damage Spreading and Lyapunov Exponents in Cellular Automata, Phys. Lett. A, 172, pp. 34–38.CrossRefGoogle Scholar
  6. 6.
    Bagnoli, F., Rechtman, R. and Ruffo, S. Maximal Lyapunov Exponent for ID Cellular Automata, in [11].Google Scholar
  7. 7.
    Bagnoli, F., Rechtman, R. and Ruffo, S. (1994) Lyapunov Exponents for Cellular Automata, in M. López de Haro, C. Varea eds., Lectures on Thermodynamics and Statistical Mechanics, World Scientific Publishing Co., Singapore.Google Scholar
  8. 8.
    Bagnoli, F. and Rechtman, R. (1999) Synchronization and Maximum Lyapunov Exponents of Cellular Automata, Phys. Rev. E, 59, p. R1307–R1310.CrossRefGoogle Scholar
  9. 9.
    Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J.-M. (1980) Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A method for Computing all of them, Part 1: Meccanica, p. 9; Part 2: Meccanica, p. 21.Google Scholar
  10. 10.
    Berlekamp, E., Conway, J. and Guy, R. eds, (1982) Winning Ways, Vol. 2, chap. 25, Academic Press, New York.zbMATHGoogle Scholar
  11. 11.
    Boccara, N., Goles, E., Martinez, S. and Picco, P. eds. (1993) Cellular Automata and Cooperative Systems, Kluwer Academic Publishers Group, Dordrecht.zbMATHGoogle Scholar
  12. 12.
    Bozoyan, S.E. (1978) Some Properties of Boolean Differentials and of Activities of Arguments of Boolean Functions, Prof. Pederachi Infor., 14(1), pp. 77–89.zbMATHGoogle Scholar
  13. 13.
    Cohen, E.G.D. (1992) New Types of Diffusion in Lattice Gas Cellular Automata, in M. Mareschal, B. L. Holian eds., Microscopic Simulations of Complex Hydrodynamic Phenomena, Plenum Press, New York.Google Scholar
  14. 14.
    Devaney, R.L. (1989) An Introduction to Chaotic Dynamical Systems, 2nd. edition, Addison Wesley Publishing Company, Redwood City, CA.zbMATHGoogle Scholar
  15. 15.
    Domany, E. (1984) Exact Results for Two — and Three — Dimensional Ising and Potts Models, Phys. Rev. Lett., 52, p. 871.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Doolen, G.D. ed. (1989) Lattice Gas Methods, Theory, Applications and Hardware, MIT Press, Cambridge, MA.Google Scholar
  17. 17.
    Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.P. (1987) Complex Systems, 1, p. 649.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Frisch, U., Hasslacher, B. and Pomeau, Y. (1986) Lattice Gas Automata for the Navier Stokes Equation, Phys. Rev. Lett., 56, p. 1505.CrossRefGoogle Scholar
  19. 19.
    Fujisaka, H. (1983) Stability Theory of Synchronized Motions in Coupled-Oscillator Systems, Prog. Them. Phys., 70, p. 1264.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ghilezan, C. (1982) Les Dérivées Partielles des Fonctions Pseudo-Booléennes Généralisées, Discrete Appliesd Math., 4, pp. 37–45.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Grassberger, P. (1982) Z. Phys. B, 47, p. 365.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Grassberger, P. (1995) J. Stat. Phys., 79, p. 13.zbMATHCrossRefGoogle Scholar
  23. 23.
    Grassberger, P. Synchronization of Coupled Systems with Spatiotempral chaos, unpublished, http://www.xxz.lanl.gov./cond-mat/9808199.
  24. 24.
    Guckenheimer, J. (1979) Sensitive Dependence on Initial Conditions for One Dimensional Maps, Commun. Math. Phys., 70, p. 113.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gutowitz H. ed. (1990) Cellular Automata: Theory and Experiment, North Holland.Google Scholar
  26. 26.
    Hardy, H., Pomeau, Y. and de Pazzis, O. (1973) J. Math. Phys., 14, p. 1736; H. Hardy, Y. Pomeau, O. de Pazzis (1976) Phys. Rev. A, 13, p. 1949.CrossRefGoogle Scholar
  27. 27.
    Herrmann, H.J. (1984) J. Stat. Phys., 32, p. 271.Google Scholar
  28. 28.
    Janssen, H.K. (1981) Z. Phys. B, 42, p. 151.CrossRefGoogle Scholar
  29. 29.
    Kapral, R. (1991) Discrete Models for Chemically Reacting Species, J. Math. Chem., 6, p. 113; R. Kapral, A. Lawniczak, P. Maziar, Complex Dynamics in Reactive Lattice-gas Models, in M. López de Haro, C. Varea eds. (1991) Lectures on Thermodynamics and Statistical Mechanics, World Scientific Publishing Co., Singapore.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kinzel, W. (1983) in Percolation Structures and Processes, G. Deutsch, R. Zallen and J. Adler eds, Hilger, Bristol.Google Scholar
  31. 31.
    Kinzel, W. (1985) Phase Transitions of Cellular Automata, Z. Phys. B., 58, p. 229.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Kong, X.P. and Cohen, E.G.D. (1991) Diffusion and Propagation in a Triangular Lorentz Lattice Gas, J. Stat. Phys., 62, p. 737.CrossRefGoogle Scholar
  33. 33.
    Kong, X.P. and Cohen, E.G.D. (1991) A Kinetic Theorist’s look at Lattice Gas Cellular Automata, Physica D, 47, p. 9.CrossRefGoogle Scholar
  34. 34.
    Li, W., Packard, N.H. and Langton, CG. (1990) Transition Phenomena in Cellular Automata Rule Space, Physica, d 45, pp. 77–94.MathSciNetGoogle Scholar
  35. 35.
    Lomnitz-Adler, J., Knopoff, L. and Martfnez-Mekler, G. (1992) Avalanches and Epidemic Models of Fracturing in Earthquakes, Phys. Rev. A, 45, p. 2211.CrossRefGoogle Scholar
  36. 36.
    Lübeck, S., Schreckenberg, M. and Usadel, K.D. (1998) Density Fluctuations and Phase Transition in the Nagel-Schreckenberg Traffic Flow Model, Phys. Rev E, 57, p. 1171.CrossRefGoogle Scholar
  37. 37.
    Manneville, P. Boccara, N., Vichniac, G.Y. and Bidaux, R. eds. (1989) Cellular Automata Modelling of Complex Physical Systems, Springer-Verlag, Berlin.Google Scholar
  38. 38.
    Morelli, L.G. and Zanette, D.H. (1998) Synchronization of Stochastically Coupled Cellular Automata, Phys. Rev E, 58, p. R8.CrossRefGoogle Scholar
  39. 39.
    Nagel, K. and Schreckenberg, M. (1992) J. Physique, 2, p. 2221.CrossRefGoogle Scholar
  40. 40.
    Noble, B. (1959) Applied Linear Algebra, Prentice Hall, Inc., Englewood Cliffs, N.J., chap. 13.Google Scholar
  41. 41.
    Oseledec, V.I. (1968) Trans. Moscow Math. Soc., 18, p. 21.Google Scholar
  42. 42.
    Ott, E. (1993) Chaos in Dynamical Systems, Cambridge University Press, New York.zbMATHGoogle Scholar
  43. 43.
    Packard, N. (1986) Lattice Models for Solidification and Aggregation, in Y. Katoh et al. eds., Procceedings of the First International Symposium for Science on Form, KTK Scientific Publisher, Dordrecht.Google Scholar
  44. 44.
    Pikovsky, A.S. and Grassberger, P. (1991) J. Phys. A: Math. Gen., 24, p. 4587.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Pomeau, Y. (1984) Invariant in Cellular Automata, J. Phys., A17, L415.MathSciNetGoogle Scholar
  46. 46.
    Rechtman, R., Salcido, A. and Calles, A. (1991) The Ehrenfest’s Wind-Tree Model and the Hypothesis of Molecular Chaos, Eur. J. Phys., 12, p. 27.CrossRefGoogle Scholar
  47. 47.
    Robert, F. (1986) Discrete Iterations, Springer-Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  48. 48.
    Schadschneider, A. and Schreckenberg, M. (1993) Cellular Automaton Models of Traffic Flow, J. Phys A, 26, p. L679.CrossRefGoogle Scholar
  49. 49.
    Seiden, P.E. and Schulman, L.S. (1990) Percolation Model of Galactic Structure, Adv. Phys., 39, p. 1.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Shereshevsky, M.A. (1992) Lyapunov Exponents for One Dimensional Cellular Automata, J. Nonlinear Sci., 2, p. 1.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Signorini, J. Complex Computing with Cellular Automata, in Ref. [37].Google Scholar
  52. 52.
    Thayse, A. and Davio, A. (1973) Boolean Differential Calculus and its Application to Switching Theory, IEEE Transactions on Computers, C22(4), pp. 409–420.MathSciNetCrossRefGoogle Scholar
  53. 53.
    Ulam, S. (1962) On Some Mathematical Problems Connected with Patterns of Growth and Figures, Proc. of Symposia in Applied Mathematics, 14, pp. 215–224, (American Mathematical Society, Rhode Island; R. Schrandt, S. Ulam, On Recursively Defined Geometrical Objects and Patterns of Growth, in A. Burks ed., Essays in Cellular Automata, University of Illinois Press, 1970.Google Scholar
  54. 54.
    Urías, J., Enciso, A. and Rechtman, R. (1997) Sensitive Dependence on Initial Conditions for Cellular Automata, Chaos, 7, p. 688.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Urías, J., Salazar, G. and Ugalde, E. (1998) Synchronization of Cellular Automaton Pairs, Chaos, 8, pp. 1–5.CrossRefGoogle Scholar
  56. 56.
    Vichniac, G. (1990) Boolean Derivatives on Cellular Automata, Physica D, 45, p. 63. Reprinted in Ref. [25].MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    von Neumann, J. (1996) Theory of Self-Reproducing Automata, University of Illinois Press. Completed and edited by A. W. Burks.Google Scholar
  58. 58.
    Wolfram, S. (1983) Statistical Mechanics of Cellullar Automata, Rev. Mod. Phys., 55, 601. Reprinted in Ref. [61], pp. 7–50.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Wolfram, S. (1984) Universality and Complexity in Cellular Automata, Physica, 10D, p. 1. Reprinted in [61] p. 91.MathSciNetGoogle Scholar
  60. 60.
    Wolfram, S. (1986) Cellular Automata Fluids 1: Basic Theory, J. Stat. Phys., 45, p. 471.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Wolfram, S. ed. (1986) Theory and Applications of Cellular Automata, World Scientific Publishing Co., Singapore.zbMATHGoogle Scholar
  62. 62.
    Zabolitzky, J.G., Herrmann, H.J. (1988) J. Comp. Phys., 76, p. 426.zbMATHCrossRefGoogle Scholar
  63. 63.
    Ziff, R.M., Kong, X.P. and Cohen, E.G.D. (1991) A Lorentz Lattice Gas and Kinetic Walk Model, Phys. Rev. A, 44, p. 2410.CrossRefGoogle Scholar
  64. 64.
    A guide to recent literature can be found in http: //alife.santafe.edu/alife/topics/cas/ca-faq/biblio/biblio.htmlGoogle Scholar
  65. 65.
    The Contributions in the Column on Mathematical Games in Scientific American are reprinted in M. Gardner, Wheels, Life and Other Mathematical Amusements, W. H. Freeman and Co., San Francisco (1983).Google Scholar
  66. 66.
    See the Appendix of Ref. [61].Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Franco Bagnoli
    • 1
  • Raul Rechtman
    • 2
  1. 1.Dipartimento di Matematica ApplicataUniversità di FirenzeFirenzeItaly
  2. 2.Centro de Investigatión en EnergíaUniversidad Nacional Autónoma de MéxicoMorelosMexico

Personalised recommendations