Electronic Structure of Amorphous Insulators and Photo-Structural Effects in Chalcogenide Glasses

  • D. A. Drabold
  • S. Nakhmanson
  • X. Zhang
Part of the NATO Science Series book series (NAII, volume 9)

Abstract

It is an exciting time to undertake theoretical studies of amorphous and glassy insulators. This is because theory and its prime tool, simulation, are reaching a level of realism necessary to explain many experimental observations and even to go beyond them in providing microscopic pictures of processes in disordered materials. In this paper we discuss the modeling of electronic structure and how this work may be developed to give qualitative insight into the localized-extended (Anderson) transition [1], a computationally and perhaps fundamentally valuable restatement of the electronic structure problem in terms of real-space localized (Wannier-like [2]) states, the impact of thermal fluctuations on electron states and transport, and the atomic-dynamical consequences of light exposure for photo-sensitive glasses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  2. 2.
    U. Stephan and D. A. Drabold, Phys. Rev. B 57 (1998) 6391; U. Stephan, R. M. Martin and D. A. Drabold, Extended range computation of Wannier functions in amorphous semiconductors, Phys. Rev. B (in press). These ideas have also been explored in: S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994); O. F. Sankey, D. A. Drabold, and A. Gibson, Phys. Rev. B 50,1376 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Thouless, Phys. Rept. 13 93 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    R. P. Feynman, Phys. Rev. 56 (1939) 340; H. Hellmann, Einfuhrung in die Quantumchemie (Franz Deutsche, Leipzig, 1937)ADSMATHCrossRefGoogle Scholar
  5. 5.
    B.R. Djordjevic et al, Phys. Rev. B, 52, 5685 (1995); F. Wooten and D. Weaire, Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1991), Vol. 40, p.2ADSCrossRefGoogle Scholar
  6. 6.
    D. A. Drabold in Insulating and Semiconducting glasses, Edited by P. Boolchand, World Scientific, Singapore (2000).Google Scholar
  7. 7.
    G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); N. Mousseau and G. T. Barkema, Phys. Rev. E 57, 2419 (1998), Comp. Sei. Eng. 1, No. 2, 74 (1999), N. Mousseau and G. T. Barkema, Phys. Rev. B 61,1898-1906 (2000).Google Scholar
  8. 8.
    See for example, R. M. Martin, Phys. Rev. B 14005 (1970).Google Scholar
  9. 9.
    For example, J. L. Yarger et al Polyamorphic transitions in network-forming liquids and glasses, ACS Symp. Series 676 214 (1997).CrossRefGoogle Scholar
  10. 10.
    G. Fabricius, E. Artacho, D. Sanchez-Portal, P. Ordejon, D. A. Drabold and J. M. Soler, Phys. Rev. B 60R16283 (1999).Google Scholar
  11. 11.
    L. J. Lewis and N. Mousseau, Comp. Mater. Sei. 12 210–241 (1998).CrossRefGoogle Scholar
  12. 12.
    M. Born and K. Huang, The dynamical theory of crystal lattices, Oxford, Clarendon (1954).Google Scholar
  13. 13.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55 2471 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    D. Sanchez-Portal, P. Ordejön, E. Artacho and J. M. Soler, Int. J. of Quantum Chem. 65, 453 (1997).CrossRefGoogle Scholar
  15. 15.
    J. Lewis, A. Demkov, J. Ortega and O. F. Sankey (unpublished).Google Scholar
  16. 16.
    P. A. Fedders, D. A. Drabold, P. Ordejön, G. Fabricius, D. Sanchez-Portal, E. Artacho and J. M. Soler, Phys. Rev. B 60 10594 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    D. A. Drabold, P. A. Fedders and P. Stumm, Phys. Rev. B 49 16415 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    Jianjun Dong and D. A. Drabold, Phys. Rev. Lett. 80 (1998) 1928.ADSCrossRefGoogle Scholar
  19. 19.
    C. Herring, Phys. Rev. 57 (1940) 1169.ADSCrossRefGoogle Scholar
  20. 20.
    W. Harrison, Electronic Structure, Freeman, San Francisco, (1980).Google Scholar
  21. 21.
    G. H. Wannier, Phys. Rev. 32 191 (1937).ADSCrossRefGoogle Scholar
  22. 22.
    See for example the seminal work of Kohn: W. Kohn, Phys. Rev. 133 A171 (1964).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    P. Ordejön, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Phys. Rev. B 48, 14 646 (1993); P. Ordejön, D. A. Drabold, R. M. Martin, and M. P. Grumbach, Phys. Rev. B 51, 1456 (1995); F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993).Google Scholar
  24. 24.
    P. Ordejon, Comp. Mater. Sei. 12 157–191 (1998).CrossRefGoogle Scholar
  25. 25.
    S. Goedecker, Rev. Mod. Phys. 71 1085–1123 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    X.-P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10 891 (1993); R. W. Nunes and D. Vanderbilt, ibid. 50,17611 (1994).CrossRefGoogle Scholar
  27. 27.
    See for example, R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73 712 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    N. Mazari and D. Vanderbilt, Phys. Rev. B 56 12847 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    U. Stephan, D. A. Drabold and R. M. Martin, Phys. Rev. B 58 13472 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    Various aspects of this work have been reported in: U. Stephan, D. A. Drabold and R. M. Martin, Phys. Rev. B (in press), and D. A. Drabold. U. Stephan, J. Dong and S. Nakhmanson, J. Mol. Graphics and Modelling (in press). The latter includes color images relevant to many points discussed in this article.Google Scholar
  31. 31.
    Otto F Sankey, DJ. Niklewski, Phys. Rev. B40, 3979 (1989); Otto F. Sankey, D.A. Drabold and G.B. Adams, Bull. Am. Phys. Soc. 36, 924 (1991).ADSGoogle Scholar
  32. 32.
    http://www.phy.ohiou.edu/~ drabold/cent.htmlGoogle Scholar
  33. 33.
    D. A. Drabold and P. A. Fedders, Phys. Rev. B 60 (1999) R721.ADSCrossRefGoogle Scholar
  34. 34.
    S. Aljishi, J. D. Cohen, and L. Ley, Phys. Rev. Lett. 64 (1990) 2811.ADSCrossRefGoogle Scholar
  35. 35.
    N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, 2nd ed. (Clarendon, Oxford, 1979).Google Scholar
  36. 36.
    V. I. Arkhipov and G. J. Adriaenssens, J. Non-Cryst. Sol. 227 (1998) 166; Phys. Rev. B 54(1996)16696.ADSCrossRefGoogle Scholar
  37. 37.
    D. A. Drabold, P. A. Fedders, S. Klemm and O. F. Sankey, Phys. Rev. Lett. 67 (1991) 2179.ADSCrossRefGoogle Scholar
  38. 38.
    D. A. Drabold, J. Non.-Cryst. Sol. 266 211 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    M. Cobb and D. A. Drabold, Phys. Rev. B 56 (1997) 3054.ADSCrossRefGoogle Scholar
  40. 40.
    X. Zhang and D. A. Drabold, Phys. Rev. Lett. 83 5042 (1999).ADSCrossRefGoogle Scholar
  41. 41.
    P. Ordejon, D. A. Drabold and R. M. Martin, Phys. Rev. Lett. 75 1324 (1995).Google Scholar
  42. 42.
    For an mpeg format animation, see: http://www.phy.ohiou.edu/~drabold/fluctuate.htmlGoogle Scholar
  43. 43.
    E. Gibbon, The Decline and Fall of the Roman Empire, abridged edition by D. M. Low, (Harcourt Brace, New York, 1960).Google Scholar
  44. 44.
    See, for example P. Thomas and S. D. Baranovskii, J. Non-Cryst. Sol. 164, (1996) 431 and references therein.CrossRefGoogle Scholar
  45. 45.
    R. E. Allen, Phys. Rev. B 50 (1994) 18629.ADSCrossRefGoogle Scholar
  46. 46.
    See for example, K. Thompson and T. J. Martinez, J. Chem. Phys. 110 (1999) 1376 and references therein.ADSCrossRefGoogle Scholar
  47. 47.
    P. A. Fedders, Y. Fu and D. A. Drabold, Phys. Rev. Lett. 23 1888 (1992).ADSCrossRefGoogle Scholar
  48. 48.
    P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Weiland and S. R. Elliott, Science 277 1799 (1997).CrossRefGoogle Scholar
  49. 49.
    H. Hisakuni and Ke. Tanaka, Science 270 974 (1995).ADSCrossRefGoogle Scholar
  50. 50.
    J. Mort, Physics Today 47, 32 (1994).CrossRefGoogle Scholar
  51. 51.
    J. Rowlands and S. Kasap, Physics Today, 50, 24 (1997).CrossRefGoogle Scholar
  52. 52.
    P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).ADSCrossRefGoogle Scholar
  53. 53.
    R.A. Street and N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975).ADSCrossRefGoogle Scholar
  54. 54.
    M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37,1504 (1976).ADSCrossRefGoogle Scholar
  55. 55.
    D. Vanderbilt and J.D. Joannopoulos, Phys. Rev. B22, 2927 (1980).ADSGoogle Scholar
  56. 56.
    D. Hohl and R.O. Jones, Phys. Rev. B43 3856,1991.ADSGoogle Scholar
  57. 57.
    R. Bellissent, Nucl. Instr. and Meth. 199, 289 (1982).CrossRefGoogle Scholar
  58. 58.
    W. A. Kamitakahara (private communication).Google Scholar
  59. 59.
    A.A. Demkov, J. Ortega, O.F. Sankey and M. Grumbach, Phys. Rev. 52, 1618 (1995).ADSCrossRefGoogle Scholar
  60. 60.
    X. Zhang and D. A. Drabold, J. Non-Crystalline Solids 241, 195 (1998).ADSCrossRefGoogle Scholar
  61. 61.
    F. Mauri and R. Car, Phys. Rev. Lett. 75 3166 (1995); J. Song et al, phys. Rev. B 53 8042 (1996); O. Pankratov and M. Scheffler, Phys. Rev. Lett. 71, 2797 (1993); For transport, G. Galli et al Phys. Rev. Lett. 42 7470 (1990).ADSCrossRefGoogle Scholar
  62. 62.
    B. W. Corb, W. D. Wei and B. L. Averbach, J. Non-Crystalline Solids 53, 29 (1982).ADSCrossRefGoogle Scholar
  63. 63.
    E.H. Henninger, R.C. Buschert and L. Heaton, J. Chem. Phys. 46, 586 (1967).ADSCrossRefGoogle Scholar
  64. 64.
    R. Kaplow, T.A. Rowe and B.L. Averbach, Phys. Rev. 168, 1068 (1968).ADSCrossRefGoogle Scholar
  65. 65.
    X. Zhang and D. A. Drabold, (unpublished).Google Scholar
  66. 66.
    We promoted either one or two electrons from the HOMO level; relaxations were similar. We report the two electron case here. The single electron promotion is probably best handled at LSDA level.Google Scholar
  67. 67.
    For example, B. Delley, “DMol, a Standard Tool for Density Functional Calculations: Review and Advances”. In J. M. Seminario and P. Politzer, eds., “Modern Density Functional Theory: A Tool for Chemistry”, vol. 2 of Theoretical and Computational Chemistry, Amsterdam, 1995. Elsevier Science Publ.Google Scholar
  68. 68.
    F. Kirchhoff, G. Kresse and M.J. Gillan, Phys. Rev. B 57, 10482 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. A. Drabold
    • 1
  • S. Nakhmanson
    • 1
  • X. Zhang
    • 1
  1. 1.Department of Physics and Astronomy, Condensed Matter and Surface Science ProgramOhio UniversityAthensUSA

Personalised recommendations