Abstract

The antennae of insects are multisensory receptor organs for the perception of chemical and mechanical stimuli. In many insect groups the antennae are movable and display specific responses to various stimuli, even to moving targets which are perceived by the compound eyes. In hymenoptera, like bees and ants, the antennae can be used for communication by transmitting tactile signals and receiving multisensory information. The amount of information which can be conveyed by antennation from a sender to a receiver seems to be limited (Hölldobler & Wilson 1990) and plays an important role especially in recruiting other individuals from the same colony (Hölldobler & Wilson 1978). Also the exchange of food and “greeting” between individuals is accompanied by distinct antennation.

Keywords

Mushroom Body Behavioural Plasticity Antennal Segment Dorsal Lobe Antennal Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erber, J. (1984). Response changes of single neurons during learning in the honeybee. In D. Alcon & R. Farley (eds. ), Primary neural substrates of learning and behavioral change (pp. 275–285). Cambridge, MA: Cambridge University Press.Google Scholar
  2. Erber, J. , & K. Schildberger (1980). Conditioning of an antennal reflex to visual stimuli in bees (Apis mellifera L. ). Journal of Comparative Physiology A135, 217–225.CrossRefGoogle Scholar
  3. Erber, J. , B. Pribbenow, A. Bauer, & P. Kloppenburg (1993a). Antennal reflexes in the honeybee: tools for studying the nervous system. Apidologia 24, 283–296.CrossRefGoogle Scholar
  4. Erber, J. , P. Kloppenburg, & A. Scheidler (1993b). Neuromodulation by serotonin and octopamine in the honeybee: Behaviour, neuroanatomy and electrophysi-ology. Experientia 49, 1073–1083.CrossRefGoogle Scholar
  5. Erber, J. , & P. Klingenberg (1995). The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L. ). I. Behavioral analysis of the motion-sensitive antennal reflex. Journal of Comparative Physiology A176, 111–118.Google Scholar
  6. Erber, J. , B. Pribbenow, K. Grandy, & S. Kierzek (1997). Tactile motor learning in the antennal system of the honeybee (Apis mellifera L.). Journal of Comparative Physiology A181, 355–365.CrossRefGoogle Scholar
  7. Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative learning in honeybees. Nature 366, 59–63.CrossRefGoogle Scholar
  8. Hammer, M. , R. Menzel, & U. Schneider (1993). Octopamine local injections into the mushroom body calyces substitute for the unconditioned stimulus in honeybee olfactory conditioning. In N. Eisner & M. Heisenberg (eds. ), Gene-brain-behaviour (p. 848). Stuttgart, New York: Thieme Verlag.Google Scholar
  9. Heran, H. (1959). Wahrnehmung und Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. Zeitschrift für vergleichende Physiologie 42, 103–163.CrossRefGoogle Scholar
  10. Hölldobler, B. , & E. O. Wilson (1978). The multiple recruitment systems of the African weaver ant Oecophylla longinoda, (Latreille) (Hymenoptera: Formi-cidae). Behavioral Ecology and Sociobiology 3, 19–60.CrossRefGoogle Scholar
  11. Hölldobler, B. , & E. O. Wilson (1990). The ants. Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong: Springer Verlag.CrossRefGoogle Scholar
  12. Kevan, P. G. , & M. A. Lane (1985). Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Science USA 82, 4750–4752.CrossRefGoogle Scholar
  13. Kirchner, W. H. , C. Dreller, & W. F. Towne (1991). Hearing in honeybees: Operant conditioning and spontaneous reactions to airborne sound. Journal of Comparative Physiology A168, 85–89.CrossRefGoogle Scholar
  14. Kisch, J. , & J. Erber (1997). Operant conditioning of honeybees (Apis melliferd) under laboratory conditions. In N. Eisner & H. Wässle (eds. ), Göttingen neurobiology report 1997 (p. 650). Stuttgart, New York: Thieme Verlag.Google Scholar
  15. Kloppenburg, P. (1995). Anatomy of the antennal motoneurons in the brain of the honeybee (Apis melliferd). Journal of Comparative Neurology 363, 333–343.CrossRefGoogle Scholar
  16. Kloppenburg, P. , & J. Erber. 1995. The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L. ). II. Electrophysiological analysis of motion-sensitive neurons in the lobula. Journal of Comparative Physiology A176, 119–129.Google Scholar
  17. Maronde, U. (1991). Common projection areas of antennal and visual pathways in the honeybee brain, Apis mellifera. Journal of Comparative Neurology 309, 328–340.CrossRefGoogle Scholar
  18. Martin, H. (1965). Leistungen des topochemischen Sinnes bei der Honigbiene. Zeitschriftfür vergleichende Physiologie 50, 254–292.Google Scholar
  19. Martin, H. , & M. Lindauer (1966). Sinnesphysiologische Leistungen beim Wabenbau der Biene. Zeitschrift für vergleichende Physiologie 53, 372–404.CrossRefGoogle Scholar
  20. Pribbenow, B. (1994). Das Antennenabtastverhalten der Honigbiene: it Verhaltensphysiologische, elektrophysiologische, morphologische und pharmakologische Untersuchungen. Dissertation FB 7, Technische Universität Berlin.Google Scholar
  21. Pribbenow, B. , & J. Erber (1996). Modulation of antennal scanning in the honeybee by sucrose stimuli, serotonin, and octopamine. Behavior and electrophysiology. Neurobiology of Learning and Memory 66, 109–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Joachim Erber
    • 1
  • Babette Pribbenow
    • 1
  1. 1.Technische UniversitätBerlinGermany

Personalised recommendations