The Associated Classical Orthogonal Polynomials

  • Mizan Rahman
Part of the NATO Science Series book series (NAII, volume 30)


The associated orthogonal polynomials p n (x;c) are defined by the 3-term recurrence relation with coefficients A n , B n , C n for p n (x) with c = 0, replaced by A n+c, B n+cand C n+c, c being the association parameter. Starting with examples where such polynomials occur in a natural way some of the well-known theories of how to determine their measures of orthogonality are discussed. The highest level of the family of classical orthogonal polynomials, namely, the associated Askey-Wilson polynomials which were studied at length by Ismail and Rahman in 1991 is reviewed with special reference to various connected results that exist in the literature.


Classical orthogonal polynomials Associated orthogonal polynomials Associated Legendre, Laguerre, Hermite, Jacobi, q-ultraspherical, q-Jacobi and Askey-Wilson polynomials Continued fractions, Stieltjes transform, Perron-Stieltjes inversion formula Hypergeometric and basic hyper-geometric series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Andrews and R. Askey, Classical orthogonal polynomials, in: “Polynomes Orthogonaux et applications”, Lecture Notes in Mathematics, Vol. 1171, Springer-Verlag, 1985, pp. 36–82.Google Scholar
  2. 2.
    R. Askey and M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc, 300 (1984).Google Scholar
  3. 3.
    R. Askey and J. A. Wilson, Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 319 (1985).Google Scholar
  4. 4.
    R. Askey and J. A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols, SIAM J. Math. Anal. 10 (1979), 1008–1016.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edn. 96A (1984), 15–37.MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Barrucand and D. Dickinson, On the associated Legendre polynomials, in: “Orthogonal Expansions and Their Continual Analogues”, D. T. Haimo, ed., Southern Illinois University Press, Edwardsville, 1968, pp. 43–50Google Scholar
  7. 7.
    R. H. Boyer, Discrete Bess el functions, J. Math. Anal. Appl. 2 (1961), 509–524.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Bustoz and M. E. H. Ismail, The associated ultraspherical polynomials and their q-analogues, Can. J. Math. 34 (1982), 718–736.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.zbMATHGoogle Scholar
  10. 10.
    T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R. Courant, K. O. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der Physik, Math. Ann., 100 (1928), 32–74.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    D. J. Dickinson, On certain polynomials associated with orthogonal polynomials, Boll. Un. Mat. Ital. (3) 13 (1958), 116–124.MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Erdélyi, et al., eds., Higher Transcendental Functions, Vol. II, Bateman Manuscript Project, McGraw-Hill, 1953.Google Scholar
  14. 14.
    G. Gasper and M. Rahman, The Basic Hypergeometric Series, Cambridge University Press, Cambridge, U. K., 1990.Google Scholar
  15. 15.
    F. A. Grünbaum and L. Haine, A theorem of Bochner, revisited, in: “Algebraic Aspects of Integrable Systems”, A. S. Fokas and I. M. Gelfand, eds., Progr. Nonlinear Differential Equations Appl., Vol. 26, Birkhäuser, Boston, 1997, pp. 143–172.CrossRefGoogle Scholar
  16. 16.
    F. A. Grünbaum and L. Haine, Some functions that generalize the Askey-Wilson polynomials, Commun. Math. Phys. 184 (1997), 173–202.zbMATHCrossRefGoogle Scholar
  17. 17.
    F. A. Grünbaum and L. Haine, Associated polynomials, spectral matrices and the bispectral problem, Methods and Appl. Anal. 6(2) (1999), 209–224.MathSciNetzbMATHGoogle Scholar
  18. 18.
    D. P. Gupta, M. E. H. Ismail, and D. R. Masson, Contiguous relations, basic hypergeometric functions and orthogonal polynomials II: Associated big q-Jacobi polynomials, J. Math. Anal. Appl. 171 (1992), 477–497.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. P. Gupta, M. E. H. Ismail, and D. R. Masson, Associated continuous Hahn polynomials, Canad. J. Math. 43 (1991), 1263–1280.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    W. Hahn, Über Orthogonalpolynome mit drei Parametern, Deutche. Math. 5 (1940-41), 373–378.Google Scholar
  21. 21.
    P. Humbert, Sur deux polynomes associés aux polynomes de Legendre, Bull. Soc. Math, de France XLVI (1918), 120–151.MathSciNetGoogle Scholar
  22. 22.
    M. E. H. Ismail, J. Letessier, D. R. Masson, and G. Valent, Birth and death processes and orthogonal polynomials, in: “Orthogonal Polynomials: Theory and Practice”, P. Nevai, ed., Kluwer Academic Publishers, The Netherlands, 1990, pp. 225–229.Google Scholar
  23. 23.
    M. E. H. Ismail, J. Letessier, and G. Valent, Linear birth and death models and associated Laguerre and Meixner polynomials, J. Approx. Theory 56 (1988), 337–348.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. E. H. Ismail, J. Letessier, and G. Valent, Quadratic birth and death processes and associated continuous dual Hahn polynomials, SIAM J. Math. Anal. 20 (1989), 727–737.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M. E. H. Ismail, J. Letessier, G. Valent, and J. Wimp, Some results on associated Wilson polynomials, in: “Orthogonal Polynomials and Their Applications”, C. Brezinski, L. Gori and A. Ronveaux, eds., IMACS Annals on Computing and Applied Mathematics, Vol. 9 (1991), pp. 293–298.Google Scholar
  26. 26.
    M. E. H. Ismail, J. Letessier, G. Valent, and J. Wimp, Two families of associated Wilson polynomials, Can. J. Math. 42 (1990), 659–695.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M. E. H. Ismail and D. R. Masson, Two families of orthogonal polynomials related to Jacobi polynomials, Rocky Mountain J. Math. 21 (1991), 359–375.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    M. E. H. Ismail and M. Rahman, Associated Askey-Wilson polynomials, Trans. Amer. Math. Soc. 328 (1991), 201–237.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    S. Karlin and J. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489–546.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    S. Karlin and J. McGregor, Linear growth, birth-and-death processes, J. Math. Mech. (now Indiana Univ. Math. J.) 7 (1958), 643–662.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    A. P. Magnus, Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials, in: “Orthogonal Polynomials and Their Applications”, M. Afaro et al., eds., Springer Lecture Notes Math. #1329 (1988), pp. 261–278.Google Scholar
  32. 32.
    D. Masson, Convergence and analytic continuation for a class of regular C-fractions, Canad. Math. Bull. 28(4) (1985), 411–421.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    D. Masson, Wilson polynomials and some continued fractions of Ramanujan, Rocky Mountain J. Math., 21 (1991), 489–499.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    D. Masson, Associated Wilson polynomials, Const. Approx. 7 (1991), 521–534.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    J. Meixner, Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion, J. Lond. Math. Soc. 9 (1934), 6–13.MathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Nevai, Orthogonal Polynomials, Mem. Amer. Math. Soc. #213 (1979), Providence, R. I.Google Scholar
  37. 37.
    F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.Google Scholar
  38. 38.
    G. Palama, Polinomi più generali di altri classici e dei loro associati e relazioni tra essi funzioini di seconda specie, Riv. Mat. Univ. Parma 4 (1953), 363–383.MathSciNetzbMATHGoogle Scholar
  39. 39.
    F. Pollaczek, Sur une généralisation des polynômes de Legendre, C. R. Acad. Sci. Paris 228 (1949), 1363–1365.MathSciNetzbMATHGoogle Scholar
  40. 40.
    F. Pollaczek, Systèmes des polynômes biorthogonaux que généralisent les polynômes ultrasphériques, C. R. Acad. Sci. Paris228, (1949), 1998–2000MathSciNetzbMATHGoogle Scholar
  41. 41.
    F. Pollaczek, Sur une famille de polynômes orthogonaux qui contient les polynômes d’Hermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris 230 (1950), 1563–2256.MathSciNetzbMATHGoogle Scholar
  42. 42.
    F. Pollaczek, Sur une famille de polynômes orthogonaux à quatre paramètres, C. R. Acad. Sci. Paris 230 (1950), 2254–2256.MathSciNetzbMATHGoogle Scholar
  43. 43.
    M. Rahman, Some generating functions for the associated Askey-Wilson polynomials, J. Comp. Appl. Math. 68 (1996), 287–296.zbMATHCrossRefGoogle Scholar
  44. 44.
    M. Rahman and Q. M. Tariq, Poisson kernel for the associated continuous q-ultraspherical polynomials, Meth. Appl. Anal. 4 (1997), 77–90.MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. A. Shohat and J. D. Tamarkin, The Problem of Moments, revised edition, Math. Surveys, Vol. 1, Amer. Math. Soc, Providence, R. I., 1950.Google Scholar
  46. 46.
    G. Szegö, Orthogonal Polynomials, 4th edn., Amer. Math. Soc. Coll. Publ., Vol. 23, Providence, R. I., 19Google Scholar
  47. 47.
    H. S. Wall and M. Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. 11 (1944), 89–102.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    J. Wilson, Hyp er geometric series, recurrence relations and some orthogonal functions, Doctoral Dissertation, University of Wisconsin, Madison, 1978.Google Scholar
  49. 49.
    J. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690–701.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    J. Wimp, Explicit formulas for the associated Jacobi polynomials and some applications, Can. J. Math. 39 (1987), 983–1000.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    J. Wimp, Some explicit Padé approximants for the function Ф’/Ф and a related quadrature formula involving Bessel functions, SIAM J. Math. Anal. 16 (1985), 887–895.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Mizan Rahman
    • 1
  1. 1.School of Mathematics & StatisticsCarleton UniversityOttawaCanada

Personalised recommendations