Advertisement

Fermi Liquid Superconductivity

Concepts, Equations, Applications
  • M. Eschrig
  • J. A. Sauls
  • H. Burkhardt
  • D. Rainer
Chapter
Part of the NATO Science Series book series (ASHT, volume 86)

Abstract

The theory of Fermi liquid superconductivity combines two important theories for correlated electrons in metals, Landau’s theory of Fermi liquids and the BCS theory of superconductivity. In a series of papers published in 195658 Landau [31] argued that a strongly interacting system of Fermions can form a “Fermi-liquid state” in which the physical properties at low temperatures and low energies are dominated by fermionic excitations calledquasi-particles.These excitations are composite states of elementary Fermions that have the same charge and spin as the non-interacting Fermions, and can be labeled by their momentumpnear a Fermi surface (defined by Fermi momentap f).Landau further argued that an ensemble of quasiparticles is described by a classical distribution function in phase space,f(p, R; t), and that the low-energy properties of such a system are governed by a classical transport equation, which we refer to as theBoltzmann-Landau transport equation.A significant feature of Landau’s theory is that quasi-particles are well defined excitations at low energy, yet their interactions are generally large and can never be neglected. These interactions lead to internal forces acting on the quasiparticles, damping of quasiparticles, and give rise to many of the unique signatures of strongly correlated Fermi liquids. The quasiparticle interactions are parametrized by phenomenological interaction functions that determine the interaction energy, internal forces between quasiparticles, and damping terms.

Keywords

Vortex Core Vortex Center Josephson Current Quasiparticle State Fermi Liquid Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambegaokar, V. and Tewordt, L. (1964), Phys. Rev. 134, A805 ADSCrossRefGoogle Scholar
  2. 2.
    . Ambegaokar, V. and Baratoff, A. (1963), Phys. Rev. Lett. 10, 486; 11, 104. Google Scholar
  3. 3.
    Ambegaokar, V., de Gennes, P.G. and Rainer, D. (1974) Phys. Rev. A 9, 2676. Google Scholar
  4. 4.
    Andreev, A.F. (1964), Soy. Phys. JETP 19, 1228. Google Scholar
  5. 5.
    Artemenko, S.N. and Volkov, A.F. (1979), Soy. Phys: Usp. 22,295. ADSCrossRefGoogle Scholar
  6. 6.
    Ashauer, B., Kieselmann, G. and Rainer, D. (1986),J. Low Temp. Phys. 36, 349. ADSCrossRefGoogle Scholar
  7. 7.
    Barash, Yu.S., Burkhardt, H. and Rainer D. (1996),Phys. Rev. Lett. 77, 4070. ADSCrossRefGoogle Scholar
  8. 8.
    Bardeen, J., Cooper, L.N. and Schrieffer,J.R. (1957), Phys. Rev. 108, 1175. MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Bardeen, J., Rickayzen, G. and Tewordt, L. (1995), Phys. Rev. 113, 982. MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bardeen, J. and Stephen, M.J. (1965), Phys. Rev. 140 A, 1197. Google Scholar
  11. 11.
    Bardeen, J., Kummel, R., Jacobs, A.E. and Tewordt, L., (1969), Phys. Rev. 187, 556. ADSCrossRefGoogle Scholar
  12. 12.
    . Barone, A. and Paternó, G. (1982),Physics and Applications of the Josephson Effect (Wiley & Sons N.Y.). CrossRefGoogle Scholar
  13. 13.
    Betbeder-Matibet, O. and Nozieres, P. (1969), Ann. Phys. 51, 329. Google Scholar
  14. 14.
    Buchholtz, L.J. and Zwicknagl, G. (1981), Phys.Rev. B 23, 5788. ADSCrossRefGoogle Scholar
  15. 15.
    Buchholtz, L.J., Palumbo M., Rainer, D. and Sauls, J.A. (1995),J. Low Temp. Phys 101,1079. ADSCrossRefGoogle Scholar
  16. 16.
    Caroli, C., de Gennes, P.G., Matricon, J. (1964), Phys. Lett. 9, 307. ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    de Gennes, P.G. (1966) Superconductivity in Metals and Alloys, W.A. Benjamin, New York; reprinted by Addison-Wesley, Reading, MA (1989). Google Scholar
  18. 18.
    Eckern, U. (1981), Ann. Phys. 133, 390. MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Eilenberger, G. 1968),Z. Physik 214, 195. ADSCrossRefGoogle Scholar
  20. 20.
    Eilenberger, G. (1962), Sov.Phys: JETP 15, 1151. Google Scholar
  21. 21.
    Eliashberg, G.M. (1972), Sov. Phys. JETP 34, 668. ADSGoogle Scholar
  22. 22.
    Eschrig, M. (1997), Ph.D. thesis, Bayreuth University. Google Scholar
  23. 23.
    Fogelström, M., Rainer, D. and Sauls, J.A. (1997),Phys. Rev. Lett. 79, 281. ADSCrossRefGoogle Scholar
  24. 24.
    Geilikman B.T (1958) Sov. Phys. JETP 7,721 Google Scholar
  25. 25.
    Gorkov, L.P. and Kopnin, N.B. (1975), Sov. Phys: Usp. 18, 496. ADSCrossRefGoogle Scholar
  26. 26.
    Hu, C.R. (1994), Phys. Rev. Lett. 72, 1526. ADSCrossRefGoogle Scholar
  27. 27.
    Hsu, T.C. (1993), Physica C 213, 305. ADSCrossRefGoogle Scholar
  28. 28.
    Jankó, Boldizsár and Shore, J.D. (1992), Phys. Rev. B 46, 9270. CrossRefGoogle Scholar
  29. 29.
    Keldysh, L.V. (1965), Sov. Phys. JETP 20, 1018. MathSciNetGoogle Scholar
  30. 30.
    Kieselmann, G. (1987), Phys. Rev. B 35, 6762. ADSCrossRefGoogle Scholar
  31. 31.
    . Landau, L.D. (1957), Sov. Phys. JETP 3, 920. Landau, L.D. (1957), Soy. Phys. JETP 5, 101. Landau, L.D. (1959), Sov. Phys. JETP 8, 70. Google Scholar
  32. 32.
    Larkin, A.I. and Ovchinnikov, Yu.N. (1968), Sov. Phys.-JETP 26, 1200. Google Scholar
  33. 33.
    Larkin, A.I. and Ovchinnikov, Y.N. (1976),Sov. Phys. JETP 41, 960. ADSGoogle Scholar
  34. 34.
    Larkin, A.I. and Ovchinnikov, Yu.N. (1977), Sov. Phys. JETP 46, 155. ADSGoogle Scholar
  35. 35.
    . Larkin, A.I. and Ovchinnikov, Yu.N. (1986), in Nonequilibrium Superconductivity edited by D. N. Langenberg and A. I. Larkin (Elsevier Science Publishers), 493. Google Scholar
  36. 36.
    Larkin, A.I. and Ovchinnikov, Yu.N. (1976), Sov. Phys. JETP 41, 960. ADSGoogle Scholar
  37. 37.
    Leggett, A.J. (1965), Phys. Rev. Lett. 14, 536.Leggett, A.J. (1965), Phys. Rev. 140, 1869.Leggett, A.J. (1966), Phys. Rev. 147,119. Google Scholar
  38. 38.
    London, F. (1950), Superfluids, Vo1.1; Wiley, New York zbMATHGoogle Scholar
  39. 39.
    Luders, G. and Usadel, K.D. (1971), The Method of the Correlation Function in Superconductivity Theory, Springer Tracts in Modern Physics No.56 (Springer, Berlin, 1971). Google Scholar
  40. 40.
    Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C.C. and McGuire, T.R. (1988), Phys. Rev. Lett. 61, 2476. ADSCrossRefGoogle Scholar
  41. 41.
    Matsumoto, M. and Shiba, H. (1995), J. Phys. Soc. Jpn. 64, 3384. ADSCrossRefGoogle Scholar
  42. 42.
    Mattis, D.C. and Bardeen, J. (1958), Phys. Rev. 111, 412. ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Migdal, A.B. (1958), Sov. Phys. JETP 7, 996. MathSciNetGoogle Scholar
  44. 44.
    Ovchinnikov, Yu.N. (1969), Soy. Phys. JETP 29, 853. MathSciNetADSGoogle Scholar
  45. 45.
    Parks R.D . (ed.) (1969) Superconductivity I+II Marcel Dekker New York Google Scholar
  46. 46.
    . Rainer D., in Recent Progress in Many-Body Theories Vol.1(Plenum Press New York 1988), 217. Google Scholar
  47. 47.
    Rainer D. and Sauls, J. A (1995) in Superconductivity From Basic Physics to the Latest Developments Lecture Notes of the Spring College in Condensed Matter Physics, I.C.T.P., Trieste, ed. by P.N. Butcher and L. Yu World Sci. Singapore Google Scholar
  48. 48.
    Rainer, D., Sauls, J.A. and Waxman, D. (1996),Phys. Rev. B 54, 10094. ADSCrossRefGoogle Scholar
  49. 49.
    Schmid, A. and Schön, G. (1975), J. Low Temp. Phys. 20, 207. ADSCrossRefGoogle Scholar
  50. 50.
    Serene, J.W. and Rainer, D. (1983), Phys. Reports 101, 221. ADSCrossRefGoogle Scholar
  51. 51.
    Shelankov, A.L. (1984), Sov. Phys.-Solid State 26, 981. Google Scholar
  52. 52.
    Shelankov, A.L. (1985), J. Low Temp. Phys 60, 29. ADSCrossRefGoogle Scholar
  53. 53.
    Sigrist, M., Bailey, D.B. and Laughlin, R.B. (1995), Phys. Rev. Lett. 74, 3249. ADSCrossRefGoogle Scholar
  54. 54.
    Tanaka, Y. and Kashiwaya, S. (1996), Phys. Rev. 53, 9371. ADSCrossRefGoogle Scholar
  55. 55.
    Zaitsev, A.V. (1984),Sov. Phys. JETP 59, 1015. Google Scholar
  56. 56.
    Zhu, Yu-Dong, Zhang, Fu-Chun and Drew, H.D. (1993),Phys. Rev. B 47, 58. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. Eschrig
    • 1
  • J. A. Sauls
    • 1
  • H. Burkhardt
    • 2
  • D. Rainer
    • 2
  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations