Advertisement

1, 2 and 3 Dimensional Photonic Materials Made Using Ion Beams: Fabrication and Optical Density-of-States

  • M. J. A. De Dood
  • L. H. Slooff
  • T. M. Hensen
  • D. L. J. Vossen
  • A. Moroz
  • T. Zijlstra
  • E. W. J. M. Van Der Drift
  • A. Van Blaaderen
  • A. Polman
Part of the NATO Science Series book series (ASIC, volume 563)

Abstract

The spontaneous emission rate of an optical probe atom is strongly dependent on its optical environment. This concept is well known in one-dimensional geometries, e.g. for an atom placed near a mirror, a dielectric interface, or in a microcavity.1,2,3,4,5,6 With the recent development of two- and three-dimensional photonic crystals it becomes possible to tailor optical modes and the local optical density-of-states (DOS) to a much greater extent. Large effects on the spontaneous emission rate of optical probe ions are expected in these materials.

Keywords

Photonic Crystal Spontaneous Emission Transverse Electric Spontaneous Emission Rate Radiative Decay Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  2. 2.
    K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumin. 1,2, 693 (1970).CrossRefGoogle Scholar
  3. 3.
    R.G. Hulet, E.S. Hilfer, and D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. 55, 2137 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    A.M. Vredenberg, N.E.J. Hunt, E.F. Schubert, D.C. Jacobson, J.M. Poate, and G.J. Zydzik, Controlled spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity, Phys. Rev. Lett. 71, 517 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    E. Snoeks, A. Lagendijk, and A. Polman, Measuring and modifying the spontaneous emission rate of erbium near an interface, Phys. Rev. Lett. 74, 2459 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    W.L. Barnes, Topical review: Fluorescence near interfaces: the role of photonic mode density, J. Mod. Opt. 45, 661 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    A. van Blaaderen, and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent monodisperse silica spheres, Langmuir 8, 2921 (1993).CrossRefGoogle Scholar
  8. 8.
    L.H. Slooff, M.J.A. de Dood, A. van Blaaderen, and A. Polman, Erbium-implanted silica colloids with 80% luminescence quantum efficiency, Appl. Phys. Lett. 76, 3682 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Hensen, M.J.A. de Dood, and A. Polman, Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation, (unpublished).Google Scholar
  10. 10.
    H. Khosravi, and R. Loudon, Vacuum field fluctuation and spontaneous emission in the vicinity of a dielectric surface, Proc. R. Soc. Lond. A 433, 337 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    H.P. Urbach, and G.L.J.A. Rikken, Spontaneous emission from a dielectric slab, Phys. Rev. A 57, 3913 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    B.A. van Tiggelen, and E. Kogan, Analogies between light and electrons: Density of states and Friedel’s identity, Phys. Rev. A 75, 422 (1995).Google Scholar
  13. 13.
    F.J.P. Schuurmans, D.T.N. de Lang, G.H. Wegdam, R. Sprik, and A. Lagendijk, Local-field effects on spontaneous emission in a dense supercritical gas, Phys. Rev. Lett. 80, 5077 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    R. Sprik, B.A. van Tiggelen, and A. Lagendijk, Optical emission in periodic dielectrics, Europhys. Lett. 35, 265 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    J.B. Pendry, and A. MacKinnon, Calculation of photon dispersion relations, Phys. Rev. Lett. 69, 2772 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press (1995).Google Scholar
  17. 17.
    A. Mekis, J.C. Chen,. I. Kurland, S. Fan, and J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 3787 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    S.Y. Lin, E. Chow, and V. Hietala and P.R. Villeneuve and J.D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal, Science 282, 274 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M.J.A. de Dood, E. Snoeks, A. Moroz, and A. Polman, Design and optimization of 2-D photonic crystal waveguides based on silicon, (unpublished).Google Scholar
  20. 20.
    S. Roorda, W.C. Sinke, J.M. Poate, D.C. Jacobson, S. Dierker, B.S. Dennis, DJ. Eaglesham, F. Spaepen, and P. Fuoss, Structural relaxation and defect annihilation in pure amorphous silicon, Phys. Rev. B 44, 3702 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    N.A.M. Verhaegh, and A. van Blaaderen, Dispersions of Rhodamine-labeled silica spheres — synthesis, characterization and fluorescence confocal scanning laser microscopy, Langmuir 10, 1427 (1994).CrossRefGoogle Scholar
  22. 22.
    S. Tachi, K. Tsujimoto, S. Arai and T. Kure, Low-temperature dry etching, J. Vac. Sci. Technol. A 9, 796 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    J.K. Bhardwaj, and H. Ashraf, Advanced silicon etching using high density plasmas, SPIE 2639, 224 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    T. Zijlstra, E. van der Drift, M.J.A. de Dood, E. Snoeks, and A. Polman, Fabrication of two-dimensional photonic crystal waveguides at 1.5 μm in silicon by deep anisotropic etching, J. Vac. Sci. Technol. B 17, 2734 (1999).CrossRefGoogle Scholar
  25. 25.
    C.N. Waddell, W.G. Spitzer, J.E. Fredrickson, G.K. Hubler, and T.A. Kennedy, Amorphous silicon produced by ion implantation: Effects of ion mass and thermal annealing, J. Appl. Phys. 55, 4361 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. J. A. De Dood
    • 1
  • L. H. Slooff
    • 1
  • T. M. Hensen
    • 1
  • D. L. J. Vossen
    • 1
  • A. Moroz
    • 1
    • 2
  • T. Zijlstra
    • 2
  • E. W. J. M. Van Der Drift
    • 2
  • A. Van Blaaderen
    • 1
    • 2
  • A. Polman
    • 1
  1. 1.FOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Delft Institute for Microelectronics and Submicron Technology DelftThe Netherlands

Personalised recommendations