Advertisement

Towards Complete Photonic Band Gap Structures Below Infrared Wavelengths

  • Alexander Moroz
Part of the NATO Science Series book series (ASIC, volume 563)

Abstract

Photonic crystals are structures with a periodically modulated dielectric constant. In analogy to the case of an electron moving in a periodic potential, certain photon frequencies can become forbidden, independent of photon polarization and the direction of propagation — a complete photonic bandgap (CPBG) [1, 2]. As early as 1975, photonic crystals with such a gap have been shown to offer the possibility of controlling the spontaneous emission of embedded atoms and molecules in volumes much greater than the emission wavelength [3] and, later on, to be an important ingredient in a variety of technological applications [4]. However, as yet no two- (2D) and three-dimensional (3D) photonic crystals are available with complete bandgaps below infrared (IR) wavelengths and fabrication of photonic crystals with such a gap poses a significant technological challenge already in the near-IR [5, 6]. One faces the extreme difficulty in satisfying combined requirements on the dielectric contrast and the modulation (the total number and the length of periodicity steps). In order to achieve a CPBG below the IR wavelengths, the modulation is supposed to be on the scale of optical wavelengths or even shorter and, as for any CPBG structure, must be achieved with roughly ten periodicity steps in each direction. This task is currently beyond the reach of reactive ion and chemical etching techniques even for 2D structures, because the hole filling fraction must be rather high and the etching must be deep enough [7]. (See, however, [8] for a recent progress using holographic techniques.) Fortunately, in 3D, such a modulation occurs naturally in colloidal crystals formed by monodisperse colloidal suspensions of microspheres. The latter are known to self-assemble into 3D crystals with excellent long-range periodicity on the optical scale [9], removing the need for complex and costly microfabrication. Colloidal systems of microspheres crystalize either in a face-centered-cubic (fec) or (for small sphere filling fraction) in a body-centered-cubic (bcc) lattice [9]. Since larger sphere filling fractions favour opening of larger gaps, simple fec structures of spheres have been one of the main subjects of our investigation.

Keywords

Photonic Crystal Photonic Crystal Fibre Colloidal Crystal Filling Fraction Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.M. Ho, C.T. Chan, and C.M. Soukoulis, Existence of photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  2. [2]
    E. Yablonovitch, T.J. Gmitter, and K.M. Leung, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  3. [3]
    V.P. Bykov, Spontaneous emission from a medium with a band spectrum, Sov. J. Quant. Electron. 4, 861 (1975).ADSCrossRefGoogle Scholar
  4. [4]
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  5. [5]
    T.F. Krauss, R.M. De La Rue, and S. Brandt, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383, 699 (1996).ADSCrossRefGoogle Scholar
  6. [6]
    S.Y. Lin et al., A three-dimensional photonic crystal operating at infrared wavelengths, Nature 394, 251 (1998).ADSCrossRefGoogle Scholar
  7. [7]
    T.F. Krauss and R.M. De La Rue, Photonic crystals in the optical regime — past, present and future, Prog. Quant. Electronics 23, 51 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    W.B. Rüs sel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge (1995).Google Scholar
  10. [10]
    H. van der Lem and A. Moroz, Towards two-dimensional complete photonic band gap structures below infrared wavelengths, J. Opt. A: Pure Appl. Opt. 2, 395 (2000).ADSCrossRefGoogle Scholar
  11. [11]
    A. Moroz, Three-dimensional complete photonic-bandgap structures in the visible, Phys. Rev. Lett. 83, 5274 (1999).ADSCrossRefGoogle Scholar
  12. [12]
    A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    H.S. Söz üe r, J.W. Haus, and R. Inguva, Photonic bands: convergence problem with the plane-wave method, Phys. Rev. B 45, 13962 (1992).ADSCrossRefGoogle Scholar
  14. [14]
    R. Biswas, M.M. Sigalas, G. Subramania, and K.-M. Ho, Photonic band gaps in colloidal systems, Phys. Rev. B 57, 3701 (1998).ADSCrossRefGoogle Scholar
  15. [15]
    A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centered cubic lattices, J. Phys.: Condens. Matter 11, 997 (1999).ADSCrossRefGoogle Scholar
  16. [16]
    K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896 (1998).ADSCrossRefGoogle Scholar
  17. [17]
    E.D. Palik et al., Handbook of Optical Constants of Solids I, Academic Press, San Diego (1991).Google Scholar
  18. [18]
    A. Moroz, Density-of-states calculation and multiple scattering theory for photons, Phys. Rev. B 51, 2068 (1995).ADSCrossRefGoogle Scholar
  19. [19]
    W.Y. Zhang, X.Y. Lei, Z.L. Wang, D.G. Zheng, W.Y. Tam, C.T. Chan, and P. Sheng, Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853 (2000).ADSCrossRefGoogle Scholar
  20. [20]
    A. Tip, J.-M. Combes, and A. Moroz, Band structure of absorptive photonic crystals, J. Phys. A: Math. Gen. 33, 6223 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    A. Moroz, A. Tip, and J.-M. Combes, Absorption in periodic layered structures, Synthetic Metals 115, (2000) (to appear).Google Scholar
  22. [22]
    K.M. Leung, Optical bistability in the scattering and absorption of light from nonlinear micropar-ticles, Phys. Rev. A 33, 2461 (1986).ADSCrossRefGoogle Scholar
  23. [23]
    D.S. Chemla and D.A. Miller, Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor nanocrystallites, Opt. Lett. 11, 522 (1986).ADSCrossRefGoogle Scholar
  24. [24]
    A. van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8, 2921 (1992).Google Scholar
  25. [25]
    C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, (1984), Chap. 9, 12.Google Scholar
  26. [26]
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and E.F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett. 78, 3294 (1997).ADSCrossRefGoogle Scholar
  27. [27]
    A.R. McGurn and A.A. Maradudin, Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays, Phys. Rev. B 48, 17576 (1993).ADSCrossRefGoogle Scholar
  28. [28]
    A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, and J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 3787 (1996).ADSCrossRefGoogle Scholar
  29. [29]
    G. Johnson, C. Manolatou, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A. Haus, Elimination of cross talk in waveguide intersections, Opt. Lett. 23, 1855 (1998).ADSCrossRefGoogle Scholar
  30. [30]
    J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, A photonic crystal fibre, Science 282, 1476 (1998).CrossRefGoogle Scholar
  31. [31]
    G. Pan, R. Kesavamoorthy, and S.A. Asher, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys. Rev. Lett. 78, 3860 (1997).ADSCrossRefGoogle Scholar
  32. [32]
    M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, and A.S. Manaka, Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures, J. Appl. Phys. 83, 2377 (1998).ADSCrossRefGoogle Scholar
  33. [33]
    R.S. Bennink, Y.-K. Yoon, R.W. Boyd, and J.E. Sipe, Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures, Opt. Lett. 24, 1416 (1999).ADSCrossRefGoogle Scholar
  34. [34]
    J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773 (1996).ADSCrossRefGoogle Scholar
  35. [35]
    A. van Blaaderen, From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids, MRS Bulletin (October) 23, 39 (1998).Google Scholar
  36. [36]
    W. Wen, N. Wang, H. Ma, Z. Lin, W.Y. Tarn, C.T. Chan, and P. Sheng, Field induced structural transition in mesocrystallites, Phys. Rev. Lett. 82, 4248 (1997).ADSCrossRefGoogle Scholar
  37. [37]
    U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851 (2000).ADSCrossRefGoogle Scholar
  38. [38]
    E. Snoeks, A. van Blaaderen, T. van Dillen, C.M. van Kats, M.L. Brongersma, and A. Polman, Colloidal ellipsoids with continuously variable shape, Adv. Materials 12, (2000) (to appear).Google Scholar
  39. [39]
    D.V. Goia and E. Matijecic, Tailoring the particle size of monodispersed colloidal gold, New Journal of Chemistry 146, 139 (1999).Google Scholar
  40. [40]
    D. Cassagne, C. Jouanin, and D. Bertho, Hexagonal photonic-band-gap structures, Phys. Rev. B 53, 7134 (1996).ADSCrossRefGoogle Scholar
  41. [41]
    M. Qiu and S. He, Large complete band gap in two-dimensional photonic crystals with elliptic air holes, Phys. Rev. B 60, 10610 (1999).ADSCrossRefGoogle Scholar
  42. [42]
    M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals, Nature 404, 740 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Alexander Moroz
    • 1
  1. 1.Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations