Photonic Crystals and Light Localization in the 21st Century pp 305-320

Part of the NATO Science Series book series (ASIC, volume 563)

Photonic Crystal Fibers: Effective-Index and Band-Gap Guidance

  • Douglas C. Allan
  • James A. West
  • James C. Fajardo
  • Michael T. Gallagher
  • Karl W. Koch
  • Nicholas F. Borrelli

Abstract

Conventional telecommunication optical waveguide glass fiber is the backbone of the internet revolution. This highly optimized and highly transparent waveguide consists of a higher refractive index core glass inside a lower index clad glass. Light is localized in the core by total internal reflection (TIR) at the core/clad boundary. The transmission distance between amplifiers of today’s fibers, about 80–120 km, is limited in part by the small but nonzero absorption and scattering of the fiber. Longer transmission lengths could be possible by increasing the power at each amplifier, but this is limited by optical nonlinearity of the glass in the fiber.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).CrossRefGoogle Scholar
  3. 3.
    P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    N. J. Doran and K. J. Blow, “Cylindrical Bragg fibers: A design and feasibility study for optical communications,” J. Lightwave Techn. LT-1, 588–590 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    C. M. de Sterke, I. M. Bassett, and A. G. Street, “Differential losses in Bragg fibers,” J. Appl. Phys. 76, 680 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    T. A. Birks, D. M. Atkin, G. Wylangowski, P. St. J. Russell, and P. J. Roberts, in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity and C. Weisbuch, Eds., Kluwer, Dordrecht, Netherlands (1996), pp. 203–218.Google Scholar
  7. 7.
    T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” El. Lett. 31, 1941–1943 (1995).CrossRefGoogle Scholar
  8. 8.
    J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).CrossRefGoogle Scholar
  9. 9.
    T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, “The analogy between photonic crystal fibres and step index fibres,” in Optical Fiber Communication Conference, OSA Technical Digest, Optical Society of America, Wash. D.C. (1999), pp. 114–116.Google Scholar
  10. 10.
    J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); 22, 484-485 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J.C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” El. Lett. 35, 63–64 (1999).CrossRefGoogle Scholar
  15. 15.
    J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” El. Lett. 34, 965–966 (1998).CrossRefGoogle Scholar
  16. 16.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ(1995).MATHGoogle Scholar
  17. 17.
    Steven G. Johnson and J. D. Joannopoulos, The MIT photonic-bands package, http://ab-initio.mit.edu/mpb.
  18. 18.
    Alex Gaeta, School of Applied and Engineering Physics, Cornell University, private communication.Google Scholar
  19. 19.
    The inclusion of interstitial air holes into the triangular lattice has been suggested to increase gap bandwidths (see J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Comm. 156, 240 (1998)). However, for the optimized parameter range discussed here, this modification does not result in improved performADSCrossRefGoogle Scholar
  20. 20.
    S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 1, 46–48 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    N. S. Kapany and J. J. Burke, Optical Waveguides, Academic Press, Inc., NY(1972).Google Scholar
  22. 22.
    J. K. Ranka, R. S. Windeier, A. J Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 run,” Opt. Lett. 25, 25–27 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Bennett, T. M. Monroe and D. J. Richardson, “Toward Practical holey fiber technology: Fabrication, splicing, modeling and characterization,” Opt. Lett. 24, 1203–1205 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Douglas C. Allan
    • 1
  • James A. West
    • 1
  • James C. Fajardo
    • 1
  • Michael T. Gallagher
    • 1
  • Karl W. Koch
    • 1
  • Nicholas F. Borrelli
    • 1
  1. 1.Sullivan ParkCorning IncorporatedCorningUSA

Personalised recommendations