Manipulating Colloidal Crystallization for Photonic Applications: From Self-Organization to Do-it-Yourself Organization

  • Alfons Van Blaaderen
  • Krassimir P. Velikov
  • Jacob P. Hoogenboom
  • Dirk L. J. Vossen
  • Anand Yethiraj
  • Roel Dullens
  • Teun Van Dillen
  • Albert Polman
Part of the NATO Science Series book series (ASIC, volume 563)


Photonic crystals are regular three-dimensional (3D) structures with which the propagation and spontaneous emission of photons can be manipulated in new ways if the feature sizes are roughly half the wavelength and the coupling with the electromagnetic radiation is sufficiently strong. ‘Early’ speculation on these new possibilities can be found in the Refs.1–4 A more recent overview can be found in Ref.5 and, of course, the other chapters in this book. A useful analogy to guide thinking about the properties and the applications of photonic crystals is the propagation of electrons in a semiconductor in comparison to the propagation of photons scattered by a regular 3D dielectric material. An example is the possibility of opening up a region of energy, a photonic band gap, for which the propagation of photons is forbidden, in analogy to the electronic band gap present in semiconductors. However, there are also important differences; for instance, the scattering of photons cannot be described well by scalar wave equations because the polarization of light cannot be neglected. Most theoretical and experimental work for visible light applications have until now focused on pure dielectric structures, interestingly, recent calculations have shown that metallo-dielectric structures should also be considered as having very interesting photonic properties in the visible, including, if one neglects absorption, a complete band gap.6–8 And even with absorption taken into account, it seems that for relatively thin photonic crystals most of the interesting optical properties remain.8


Photonic Crystal Silica Sphere Colloidal Crystal Optical Tweezer Face Centered Cubic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Bykov, Spontaneous emission from a medium with a band spectrum, Sov. J. Quantom Electron. 4, 861 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
  3. 3.
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals ed., Princeton Univ. Press, Princeton, (1995).zbMATHGoogle Scholar
  5. 5.
    T.F. Krauss and R.M. Delarue, Photonic Crystals in the Optical Regime — Past, Present and Future, Progress in Quantum Electronics 23, 51 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible, Phys. Rev. Lett. 83, 5274 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    A. Moroz, Photonic crystals of coated metallic spheres, Europhys. Lett. 50, 466 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    W. Y. Zhang, X. Y. Lei, Z. L. Wang et al., Robust photonic band gap from tunable scatterers, Phys. Rev. Lett. 84, 2853 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: From inorganic oxides to metals, Adv. Mater. 12, 531 (2000).CrossRefGoogle Scholar
  10. 10.
    W.B. Russel, D.A. Saville, and W.R. Schowalter. Colloidal Dispersions ed., Cambridge University Press, Cambridge, (1995).Google Scholar
  11. 11.
    T. Palberg, Colloidal crystallization dynamics, Curr. Opin. Colloid Interface Sci. 2, 607 (1997).CrossRefGoogle Scholar
  12. 12.
    O. Pouliquen, M. Nicolas, and P. D. Weidman, Crystallization of non-Brownian spheres under horizontal shaking, Phys. Rev. Lett. 19, 3640 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    A. van Blaaderen and A. Vrij, Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres, Langmuir 8, 2921 (1992).CrossRefGoogle Scholar
  14. 14.
    N. A. M. Verhaegh and A. van Blaaderen, Dispersions of Rhodamine-Labeled Silica Spheres — Synthesis, Characterization, and Fluorescence Confocal Scanning Laser Microscopy, Langmuir 10, 1427 (1994).CrossRefGoogle Scholar
  15. 15.
    A. van Blaaderen, From the de Broglie to visible wavelengths: Manipulating electrons and photons with colloids, MRS Bull. 23, 39 (1998).Google Scholar
  16. 16.
    F. J. Arriagada and K. Osseoasare, Synthesis of Nanometer-Sized Silica By Controlled Hydrolysis in Reverse Micellar Systems, in: Colloid Chemistry of Silica, Amer. Chemical Soc., Washington, Vol. 234, (1994).Google Scholar
  17. 17.
    W. K. Kegel and A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science 287, 290 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    K.P. Velikov and A. van Blaaderen, ZnS-core silica-shell colloids for photonic applications, Submitted (2000).Google Scholar
  19. 19.
    A. van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed colloidal crystallization Nature 385, 321 (1997).Google Scholar
  20. 20.
    U. Dassanayake, S. Fraden, and A. van Blaaderen, Structure of electrorheological fluids, J. Chem. Phys. 112, 3851 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    R. M. Amos, J. G. Rarity, P. R. Tapster et al., Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    K. Visscher and S. M. Block, Versatile Optical Traps with Feedback Control, in: Methods in Enzymology, R B Vallee, ed Academic Press, San Diego, Vol. 298, (1997).Google Scholar
  23. 23.
    D. L. J. Vossen, T. van Dillen, M. J. A. de Dood, T. Zijlstra, E. van der Drift, A. Polman, A. van Blaaderen, Novel method for solution growth of thin silica films from tetraethoxysilane, Adv. Materials 12, 1434 (2000).CrossRefGoogle Scholar
  24. 24.
    P. Jiang, J. F. Bertone, K. S. Hwang et al., Single-crystal colloidal multilayers of controlled thickness, Chem. Mat. 11, 2132 (1999).CrossRefGoogle Scholar
  25. 25.
    E. Snoeks, A. van Blaaderen, T. van Dillen et al., Colloidal ellipsoids with continuously variable shape, Adv. Materials, 12, 1511 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Neser, C. Bechinger, P. Leiderer et al., Finite-size effects on the closest packing of hard spheres, Phys. Rev. Lett. 79, 2348 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    S. Pronk and D. Frenkel, Can stacking faults in hard-sphere crystals anneal out spontaneously?, J. Chem. Phys. 110, 4589 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    J. Aizenberg, P. V. Braun, and P. Wiltzius,Patterned colloidal deposition controlled by electrostatic and capillary forces, Phys. Rev. Lett. 84, 2997 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    R. Tao and J. M. Sun,3-Dimensional Structure of Induced Electrorheological Solid, Phys. Rev. Lett. 67, 398 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    R. Tao and Q. Jiang, Simulation of Structure Formation in an Electrorheological Fluid, Phys. Rev. Lett. 73, 205 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156 (1970).ADSCrossRefGoogle Scholar
  32. 32.
    A Ashkin and J M Dziedic, Optical levitation by radiation pressure, Phys. Rev. Lett. 19, 283 (1971).Google Scholar
  33. 33.
    D G Grier, Optical tweezers in colloid and interface science, Curr. Opin. Colloid Interface Sci. 2, 264 (1997).CrossRefGoogle Scholar
  34. 34.
    E. R. Dufresne and D. G. Grier, Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Scient. Instr. 69, 1974 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    F. Burmeister, W. Badowsky, T. Braun et al., Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces, Appl. Surf. Sci. 145, 461 (1999).CrossRefGoogle Scholar
  36. 36.
    P. Bartlett, R. H. Ottewill, and P. N. Pusey, Freezing of Binary-Mixtures of Colloidal Hard-Spheres J. Chem. Phys. 93, 1299 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    A. Moroz and C. Sommers, Photonic band gaps of three-dimensional face-centred cubic lattices, J. Phys.-Condes. Matter 11, 997 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    A. Blanco, E. Chomski, S. Grabtchak et al., Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres Nature 405, 437 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Alfons Van Blaaderen
    • 1
    • 2
  • Krassimir P. Velikov
    • 1
  • Jacob P. Hoogenboom
    • 1
    • 2
  • Dirk L. J. Vossen
    • 1
    • 2
  • Anand Yethiraj
    • 1
    • 2
  • Roel Dullens
    • 1
  • Teun Van Dillen
    • 2
  • Albert Polman
    • 2
  1. 1.Condensed Matter Dept.Debye Inst., Utrecht UniversityUtrechtThe Netherlands
  2. 2.FOM Inst. for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations