Experimental Probes of the Optical Properties of Photonic Crystals

  • Willem L. VosEmail author
  • Henry M. van Driel
  • Mischa Megens
  • A. Femius Koenderink
  • Arnout Imhof
Part of the NATO Science Series book series (ASIC, volume 563)


The propagation of electromagnetic radiation in three-dimensional periodic dielectric structures is strongly modified if the wavelength of the radiation is on the order of the lattice spacing.1–5 Such structures are called photonic crystals. Their periodicity gives rise to photonic band structures in a way that is analogous to electronic band structures.6 Much of the recent interest in photonic crystals stems from the possibility of making lattices for which there exists a range of frequencies in which waves cannot propagate in any direction in the crystal.1–4 Such a photonic band gap occurs if the coupling between light and lattice is sufficiently strong. The coupling is conveniently gauged by the polarizability per volume of the scatters.7 If a lattice could be constructed with a photonic band gap at optical frequencies, this would result in spectacular effects such as the inhibition of spontaneous emission,3 and localization of light.4


Photonic Crystal Spontaneous Emission Bragg Reflection Colloidal Crystal Bragg Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Soukoulis, ed., Photonic Band Gap Materials, Kluwer, Dordrecht (1996).CrossRefGoogle Scholar
  2. 2.
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Princeton University Press, Princeton NJ (1995).zbMATHGoogle Scholar
  3. 3.
    E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    R.W. James, The Optical Principles of the Diffraction of X-rays, Bell, London (1962).Google Scholar
  6. 6.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York (1976).Google Scholar
  7. 7.
    W.L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G.H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996); erratum: Ibid. 55, 1903 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    E. Yablonovitch, T.J. Gmitter, and K.M. Leung, “Photonic band structure: the face centered cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    U. Grün ing, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    T.F. Krauss, R.M. DeLaRue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    N. Yamamoto, S. Noda, and A. Chutinan, “Development of one period of a three-dimensional photonic crystal in the 5-10 μm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques,” Jpn. J. Appl. Phys. 37, L1052 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    A. Imhof and D.J. Pine, “Ordered macroporous materials by emulsion templating,” Nature 389, 948 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    O.D. Velev and E. Kaler, “Structured porous materials via colloidal crystal templating: from inorganic oxides to metals,” Adv. Mater. 12, 531 (2000), and references therein.CrossRefGoogle Scholar
  15. 15.
    B.T. Holland, C.F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spherical voids,” Science 281, 538 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    J.E.G.J. Wijnhoven and W.L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti, and V.G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Thyssen, R. Sprik, J.E.G.J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W.L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, and H.M. van Driel, “Large scale synthesis of a silicon photonic crystal with a complete three-dimensional photonic band gap near 1.5 micrometers,” Nature 405, 437 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    H.S. Söz iier, J.W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    M. Megens, C.M. van Kats, P. Bösecke, and W.L. Vos, “In-situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering,” Langmuir 13, 6120 (1997).CrossRefGoogle Scholar
  23. 23.
    M. Megens, C.M. van Kats, P. Bösecke, and W.L. Vos, “Synchrotron small angle x-ray scattering of colloids and photonic colloidal crystals,” J. Appl. Cryst. 13, 637 (1997).CrossRefGoogle Scholar
  24. 24.
    W.L. Vos, M. Megens, C.M. van Kats, and P. Bösecke, “X-ray diffraction of photonic colloidal single crystals,” Langmuir 13, 6004 (1997).CrossRefGoogle Scholar
  25. 25.
    M. Megens, J.E.G.J. Wijnhoven, A. Lagendijk, and W.L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59, 4727 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    M. Megens, Ph.D. thesis, Universiteit van Amsterdam (October 1999), available as pdf from our website.Google Scholar
  27. 27.
    A. Imhof, M. Megens, J.J. Engelberts, D.T.N. de Lang, R. Sprik, and W.L. Vos, “Spec-troscopy of Fluorescein (FITC) dyed colloidal silica spheres,” J. Phys. Chem. B 103, 1408 (1999).CrossRefGoogle Scholar
  28. 28.
    M. Megens, J.E.G.J. Wijnhoven, A. Lagendijk, and W.L. Vos, “Light sources inside photonic crystals,” J. Opt. Soc. Am. B 16, 1403 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    M. Megens, H.P. Schriemer, A. Lagendijk, and W.L. Vos, “Comment on: Spontaneous emission of organic molecules embedded in photonic crystal,” Phys. Rev. Leu. 83, 5401 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    J.E.G.J. Wijnhoven, L. Bechger, and W.L. Vos, to be published.Google Scholar
  31. 31.
    J.E.G.J. Wijnhoven, S.J.M. Zevenhuizen, M. Hendriks, D. Vanmaekelbergh, J.J. Kelly, and W.L. Vos, “Electrochemical assembly of ordered macropores in gold.” Adv. Mater. 12, 888 (2000).CrossRefGoogle Scholar
  32. 32.
    M. Megens and W.L. Vos, “Excursions of particles in a colloidal crystal,” Phys. Rev. Lett. (submitted, 2000).Google Scholar
  33. 33.
    W.L. Vos, R. Sprik, A. Lagendijk, G.H. Wegdam, A. Imhof, and A. van Blaaderen, “Dispersive effects on light scattering of photonic colloidal crystals,” 1994 European Quantum Electronics Conference, Postdeadline digest, IEEE/LEOS, Piscataway NJ, (1994), paper EPD6.Google Scholar
  34. 34.
    W.L. Vos, J.E.G.J. Wijnhoven, and M. Megens, “Experimental probe of gaps in photonic crystals,” Conference on Lasers and Electro-Optics Europe, IEEE/LEOS, Piscataway NJ, 1998), paper CFB6.Google Scholar
  35. 35.
    W.L. Vos, M. Megens, C.M. van Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    K.W.K. Shung and Y.C. Tsai, “Surface effects and band measurements in photonic crystals,” Phys. Rev.B 48, 11265 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    R.J. Spry and D.J. Kosan, “Theoretical analysis of the crystalline colloidal array filter,” Appl. Spectrosc. 40, 782 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    H.M. van Driel and W.L. Vos, “Multiple Bragg wave coupling in photonic band gap crystals,” Phys. Rev. B 62, 9872 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    W.L. Vos and H.M. van Driel, “Higher order Bragg diffraction by strongly photonic fec crystals: onset of a photonic bandgap,” Phys. Lett. A 272, 101 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    A. Imhof, W.L. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    J.F. Bertone, P. Jiang, K.S. Hwang, D.M. Mittleman, and V.L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83, 300 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    Yu.A. Vlasov, V.N. Astratov, O.Z. Karimov, and A.A. Kaplyanskii, “Existence of a photonic pseudogap for visible light in synthetic opal,” Phys. Rev. B 55, 13357 (1997).ADSCrossRefGoogle Scholar
  44. 44.
    E. Öz bay, “Micromachined photonic band gap crystals: from microwave to far-infrared,” in: C.M. Soukoulis, ed., Photonic Band Gap Materials, Kluwer, Dordrecht (1996), p. 41.CrossRefGoogle Scholar
  45. 45.
    A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708 (1993).ADSCrossRefGoogle Scholar
  46. 46.
    C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, “ Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett. 73, 2308 (1994).ADSCrossRefGoogle Scholar
  47. 47.
    M. Scalora, R.J. Flynn, S.B. Reinhardt, R.L. Fork, M.J. Bloemer, M.D. Tocci, C.M. Bow-den, H.S. Ledbetter, J.M. Bendickson, and R.P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    Yu.A. Vlasov, S. Petit, G. Klein, B. Hönerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    R.H.J. Kop and R. Sprik, “Phase sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum., 66, 5459 (1995).ADSCrossRefGoogle Scholar
  50. 50.
    E. Lidorikis, Q. Li, and C.M. Soukoulis, “Optical bistability in colloidal crystals,” Phys. Rev.E 55, 3613 (1997).ADSCrossRefGoogle Scholar
  51. 51.
    R.H.J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, “Kramers-Kronig relations for an interferometer,” Opt. Commun. 138, 118 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).ADSCrossRefGoogle Scholar
  53. 53.
    S. Haroche, “Cavity quantum electrodynamics,” in Systèmes fondamentaux en optique quantique/Fundamental systems in quantum optics, Eds. J. Dalibard, J.-M. Raimond, J. Zinn-Justin, North-Holland, Amsterdam (1992).Google Scholar
  54. 54.
    H.P. Schriemer, H.M. van Driel, A.F. Koenderink, and W.L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A. Rapid Comm. 63 (January 1, 2001).Google Scholar
  55. 55.
    F. DeMartini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955 (1987).ADSCrossRefGoogle Scholar
  56. 56.
    J. Martorell and N.M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877 (1990).ADSCrossRefGoogle Scholar
  57. 57.
    E. P. Petrov, V. N. Bogomolov, I.I. Kalosha, and S V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77 (1998); “Modification of the spontaneous emission of dye molecules in photonic crystals,” Acta Phys. Pol. A 94, 761 (1998).ADSCrossRefGoogle Scholar
  58. 58.
    P.W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492 (1958); S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169 (1984).Google Scholar
  59. 59.
    D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light,” Nature 390, 671 (1997).ADSCrossRefGoogle Scholar
  60. 60.
    F.J.P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk, “Light scattering near the localization transition in macroporous GaP networks,” Phys. Rev. Lett. 83, 2183 (1999).ADSCrossRefGoogle Scholar
  61. 61.
    Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 8, 831 (1984), M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692 (1985); P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696 (1985).ADSCrossRefGoogle Scholar
  62. 62.
    E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev.Lett. 56, 1471 (1986).ADSCrossRefGoogle Scholar
  63. 63.
    M. B. van der Mark, M. P. van Albada, and A. Lagendijk, “Light scattering in strongly scattering media: Multiple scattering and weak localization,” Phys. Rev. B 37, 3575 (1988).ADSCrossRefGoogle Scholar
  64. 64.
    A.F. Koenderink, M. Megens, G. van Soest, W.L Vos, and A. Lagendijk, “Enhanced backscattering from photonic crystals,” Phys. Lett. A 268, 104 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81 (1989).ADSCrossRefGoogle Scholar
  66. 66.
    H. C. van der Hülst, Light Scattering by Small Particles, Dover, New York (1981).Google Scholar
  67. 67.
    P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic, San Diego (1995).Google Scholar
  68. 68.
    D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum. 66, 5473 (1995).ADSCrossRefGoogle Scholar
  69. 69.
    K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3986 (1998).ADSCrossRefGoogle Scholar
  70. 70.
    R. Biswas, M.M. Sigalas, G. Subramania, C.M. Soukoulis, and K.M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61, 4549 (2000).ADSCrossRefGoogle Scholar
  71. 71.
    D. Labilloy, H. Benisty, C. Weisbuch, T.F. Krauss, D. Cassagne, C. Jouanin, R. Houdre, U. Oesterle, and V. Bardinal, “Diffraction efficiency and guided light control by two dimensional photonic band gap lattices,” IEEE J. Quant. Electr. 35, 1045 (1999).ADSCrossRefGoogle Scholar
  72. 72.
    W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, and J.D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).ADSCrossRefGoogle Scholar
  73. 73.
    K. Sakoda, “Group-theoretical classification of eigenmodes in three-dimensional photonic lattices,” Phys. Rev. B 55, 15345 (1997).ADSCrossRefGoogle Scholar
  74. 74.
    R. Sprik, B.A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265 (1996).ADSCrossRefGoogle Scholar
  75. 75.
    T. Suzuki and P.K.L. Yu, “Emission power of an electric dipole in the photonic band structure of the fec lattice,” J. Opt. Soc. Am. B 12, 570 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Willem L. Vos
    • 1
    Email author
  • Henry M. van Driel
    • 1
  • Mischa Megens
    • 1
  • A. Femius Koenderink
    • 1
  • Arnout Imhof
    • 1
  1. 1.van der Waals-Zeeman InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations