Size-Frequency Distributions of Planetary Impact Craters and Asteroids

  • B. A. Ivanov
  • G. Neukum
  • R. Wagner
Part of the Astrophysics and Space Science Library book series (ASSL, volume 261)


The size-frequency distributions (SFD) for projectiles which formed craters on terrestrial planets and asteroids Gaspra, Ida, and Mathilde are compared using modern cratering scaling laws. The result shows the relative stability of these distributions during the past 3.7 Gy (Orientale basin and younger formations). The derived projectile size-frequency distribution is compared with the size-frequency distribution of main-belt asteroids. The recent Spacewatch data demonstrate the spectacular similarity of the size distribution of asteroids with diameters larger than 1 km and the population of crater-forming projectiles derived from the cratering data. Consequently one can suppose that the efficiency of the new projectile delivery to planetary crossing orbits does not depend on asteroid size. The migration of large main belt bodies to Mars-crossing orbits or to resonances seems to play an important role in the generation of planet-crossing impactors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvidson, R., Boyce, J., Chapman, C, Cintala, M., Fulchignoni, M, Moore, H., Neukum,G., Schultz, P., Soderblom, L., Strom., R., Woronov, A. and Young, R. (1978) Stan-dard techniques for presentation and analysis of crater size-frequency data, Icarus 37, 467–474.Google Scholar
  2. Asphaug, E., Moore, J.M., Morrison, D., Benz, W., Nolan, M.C. and Sullivan, R.J. (1996) Mechanical and geological effects of impact cratering on Ida, Icarus 120, 158–184.ADSCrossRefGoogle Scholar
  3. Basaltic Volcanism Study Project (1981) Chapter 8 “Chronology of planetary volcanism by comparative studies of planetary cratering”, in Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, N.Y., pp. 1049–1127.Google Scholar
  4. Belton, M.J.S. and 19 co-authors (1994) First images of asteroid 243 Ida, Science 265,1543.ADSCrossRefGoogle Scholar
  5. Belton, M.J.S. and 9 co-authors (1992) Galileo encounter with 951 Gaspra- First pictures of an asteroid, Science 257, 1647–1652.ADSCrossRefGoogle Scholar
  6. Bryan, J.B., Burton, D.E., Cunningam, M.E. and Lettis, L.A. (1978) A two-dimensional computer simulation of hypervelocity impact cratering: Some preliminary results for Meteor Crater, Arizona, Proc. Lunar Planet. Sci. Conf. 9th, pp. 3931–3964.Google Scholar
  7. Campo Bagatin, A., Cellino A., Davis, D.R., Farinella, P. and Paolicchi, P. (1994a) Wavy size distribution for collisional systems with a small-size cutoff, Planet. Space Sci. 42, 1049–1092.Google Scholar
  8. Campo Bagatin, A., Farinella, P. and Petit, J.-M. (1994b) Fragment ejection velocities and the collisional evolution of asteroids, Planet. Space Sci. 42, 1099–1107.ADSCrossRefGoogle Scholar
  9. Cellino, A., Zappalà, V. and Farinella, P. (1991) The asteroid size distribution from IRAS data, Mon. Not. R. Astr. Soc. 253, 561–574.ADSGoogle Scholar
  10. Chapman, C.R. (1995) Galileo observations of Gaspra, Ida, and Dactyl: Implications for meteoritics, Meteoritics 30, 496.ADSGoogle Scholar
  11. Chapman, C.R. and McKinnon, W.B. (1986) Cratering of planetary satellites, in Satellites, (J.A. Burns and M.S. Matthews eds.) Univ. Arizona Press, Tucson, pp. 492–580.Google Scholar
  12. Chapman, C, and 7 co-authors (1996a) Cratering on Ida, Icarus 120, 77–86.ADSCrossRefGoogle Scholar
  13. Chapman, C, Veverka. J. , Belton, M., Neukum, G. and Morrison, D. (1996) Cratering on Gaspra, Icarus 120, 231–245.ADSCrossRefGoogle Scholar
  14. Croft, S.K. (1985) The scaling of complex craters, Proceedings of 15th Lunar Planet. Sci. Conf., J. Geophys. Res. 90, C828–C842.ADSCrossRefGoogle Scholar
  15. Davis, D.R., Ryan, E.V. and Farinella, P. (1994) Asteroid collisional evolution: results from current scaling algorithm, Planet. Space. Sci. 43, 599–610.ADSCrossRefGoogle Scholar
  16. Davis, D., Weidenshilling, S.J., Farinella, P., Paolicchi, P. and Binzel, R.P. (1989) Asteroid collisional history: Effects on sizes and spins, in Asteroids II, (R. Binzel, T. Gehrels, and M.S. Matthews eds.), Univ. Arizona Press, Tucson, pp. 805–826.Google Scholar
  17. Davis, D.R., Chapman, C.R., Weidenschilling, S.J. and Greenberg, R. (1985) Collisional history of asteroids: Evidence from Vesta and the Hirayama families, Icarus 62, 30–35.ADSCrossRefGoogle Scholar
  18. Dohnanyi, J.W. (1969) Collisional model of asteroids and their debris, J. Geophys. Res. 74, 2531–2554.ADSCrossRefGoogle Scholar
  19. Durda, D., Greenberg, R. and Jedicke, R. (1998) Collisional models and scaling laws: A new interpretation of the shape of the Main-belt asteroid distribution, Icarus 135, 431–440.ADSCrossRefGoogle Scholar
  20. Gault, D.E. and Wedekind, J.A. (1978) Experimental studies of oblique impact, in Proc. Lunar Planet. Set. Conf. 9th, Pergamon Press, N.Y., pp. 3843–3875.Google Scholar
  21. Gradie, J.C., Chapman, C.R. and Tedesco, E.W. (1989) Distribution of taxonomic classes and the compositional structure of the asteroid belt, in Asteroids II, (Binzel R.P., Gehrels T., and Matthews, M.S. eds.), Univ. Arizona Press, Tucson, pp. 316–335.Google Scholar
  22. Grieve, R.A.F. and Shoemaker E.M. (1994) The record of the past impacts on Earth, in Hazards due to Comets and Asteroids, (T. Gehrels, Ed.) Univ. Arizona Press, Tucson, pp. 417–462.Google Scholar
  23. Hartmann, W.K. (1977) Relative crater production rates on planets, Icarus 31, 260–276.ADSCrossRefGoogle Scholar
  24. Hartmann, W.K. (1984) Does crater “saturation equilibrium” occur in the Solar System?, Icarus 60, 56–74.ADSCrossRefGoogle Scholar
  25. Hartmann, W.K. (1995) Planetary cratering I: Lunar highlands and tests of hypotheses on crater populations, Meteoritics 30, 451–467.ADSCrossRefGoogle Scholar
  26. Hartmann, W.K., Berman, D., Esquerdo, G.A. and McEwen, A. (1999a) Recent Martian volcanism: New evidence from Mars Global Surveyor (abstract), LPSC XXX, CD-ROM edition, No. 1270.Google Scholar
  27. Hartmann, W.K., Malin, M.M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P. and Veverka, J. (1999b) Evidence for recent volcanism on Mars from crater counts, Nature 397, 586–589.ADSCrossRefGoogle Scholar
  28. Holsapple, K.A. (1993) The scaling of impact processes in planetary sciences, Ann. Rev. Earth.Planet. Sci. 21, 333–373.ADSCrossRefGoogle Scholar
  29. Holsapple, K.A. and Schmidt, R.M. (1979) A material-strength model for apparent crater volume Proc. Lunar Planet. Sci. Conf. 10th, pp. 2757–2777.Google Scholar
  30. Housen, K.R., Schmidt, R.M. and Holsapple, K.A. (1983) Crater ejecta scaling laws: Fundamental forms based on dimensional analysis, J. Geophys. Res. 88, 2485–2499.ADSCrossRefGoogle Scholar
  31. Ivanov, B.A. (1979) Simple model of cratering, Meteoritika no. 38, pp. 68–85, in Russian.ADSGoogle Scholar
  32. Ivanov, B.A. (1981) Cratering mechanics, in Advances in Science and Technology of VINITI, Ser. Mechanics of Deformable Solids 14, VINITI Press, Moscow, pp. 60- 128,in Russian - see also English translation: NASA Tech. Memorandum 88477/N87-15662, 1986.Google Scholar
  33. Ivanov, B.A. and Kostuchenko, V.N (1997) Block oscillation model for impact crater collapse, Lunar and Planetary Science Conference 28th, CD-ROM, abstract no. 1655.Google Scholar
  34. Ivanov, B.A., Neukum, G. and Wagner, R. (1999) Impact craters, NEA, and main belt asteroids: Size-frequency Distribution, Lunar and Planetary Science Conference 30, CD-ROM edition, abstract no. 1583.Google Scholar
  35. Ivanov, B.A., Basilevsky, A.T. and Neukum, G. (1997) Atmospheric entry of large me- teoroids: Implication to Titan, Planet. Space Sci. 45, 993–1007.ADSCrossRefGoogle Scholar
  36. Jedicke, R. and Metcalfe, T.S. (1998) The orbital absolute magnitude distributions of Main Belt asteroids, Icarus 131, 245–260.ADSCrossRefGoogle Scholar
  37. Love, S. and Ahrens, T.J. (1996) Catastrophic impacts on gravity dominated asteroids, Icarus 124, 141–155.ADSCrossRefGoogle Scholar
  38. McCrosky, R., Chao, K. and Posen, A. (1979). Data on bolides of Prairie Network, Meteoritika no. 37, Nauka Press, Moscow, pp. 44–59 (in Russian).Google Scholar
  39. McEwen, A.S., Gaddis, L.R., Neukum, G., Hoffman, H., Pieters, C.M. and Head, J.W. (1993) Galileo observations of post-Imbrium lunar craters during the first Earth-Moon flyby, J. Geophys. Res. 98 no. E9, 17,207–17,231.CrossRefGoogle Scholar
  40. McEwen, A.S., Moore, J.M. and Shoemaker, E.M. (1997) The Phanerozoic impact cra- tering rate: Evidence from the farside of the Moon, J. Geophys. Res. 102, 9231–9242.ADSCrossRefGoogle Scholar
  41. McKinnon, W.B. (1978) An investigation into the role of plastic failure in crater modification, in Proc. Lunar Planet. Sci. Conf. 9th, Pergamon Press, NY, pp. 3965–3973.Google Scholar
  42. Melosh, H. J. (1977) Crater modification by gravity: A mechanical analysis of slumping, in Impact and Explosion Cratering, Pergamon Press, NY, pp. 1245–1260.Google Scholar
  43. Melosh, H.J. (1979) Acoustic fluidization: a new geologic process?, J. Geophys. Res. 84, 7513–7520.ADSCrossRefGoogle Scholar
  44. Melosh, H.J. (1982) A schematic model of crater modification by gravity, J. Geophys. Res. 87, 371–380.ADSCrossRefGoogle Scholar
  45. Melosh, H.J.(1989) Impact Cratering: A Geologic Process, Oxford University Press, N.Y. & Clarendon Press, Oxford, 245 pp.Google Scholar
  46. Melosh, H.J. and Ivanov, B.A. (1999) Impact crater collapse, Annu. Rev. Earth Planet. Sci. 27, 385–415ADSCrossRefGoogle Scholar
  47. Melosh, H.J. and Ryan, E.V. (1997) Note: Asteroids shattered but not dispersed, Icarus 129,562–564.ADSCrossRefGoogle Scholar
  48. Milani, A., Carpino, M., Hahn, G. and Nobili, A.M. (1989) Dynamics of planet-crossing asteroids: Classes of orbital behavior, Icarus 78, 212–269.ADSCrossRefGoogle Scholar
  49. Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub’, A.P., Popova, O.P., Shuvalov,V.V., Spalding, R.E., Jacobs, C. and Tagliaferri, E. (1997) Assessement of kinetic energy of meteoroids detected by satellite-based light sensors, Icarus 130, 259–274.ADSCrossRefGoogle Scholar
  50. Neukum, G. (1983) Meteoritenbombardement and Datierung Planetarer Oberflächen, Habilitation dissertation for faculty membership, Univ. of Munich, 186 pp.Google Scholar
  51. Neukum, G., and Ivanov, B.A. (1994) Crater size distribution and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards due to Comets and Asteroids, (T. Gehrels, Ed.), Univ. Arizona Press, Tucson, pp. 359–416.Google Scholar
  52. Nolan, M.C., Asphaug E., Melosh, H.J. and Greenberg, R. (1996) Impact craters on asteroids: Does gravity or strength control their size?, Icarus 124, 359–371.ADSCrossRefGoogle Scholar
  53. Pierazzo, E., Vickery, A.M. and Melosh, H.J. (1997) A reevaluation of impact melt production, Icarus 127, 408–423.ADSCrossRefGoogle Scholar
  54. Pike, R. (1977) Size-dependence in the shape of fresh impact craters on the moon, in Impact and Explosion Cratering, (Eds. Roddy D.J., Pepin R.O., and Merrill R.B.),Pergamon Press, N.Y., pp. 489–510.Google Scholar
  55. Pike, R. J. (1980) Control of crater morphology by gravity and target type: Mars, Earth,moon, in Proc. Lunar. Planet Sci. Conf 11th, Pergamon Press, N.Y., pp. 2159–2189.Google Scholar
  56. Pike, R.J. and Davis, P.A. (1984) Toward a topographic model of Martian craters from photoclinometry (abstract), Lunar and Planetary Science XV, pp. 645–646.Google Scholar
  57. Rabinowitz, D. (1993) The size-distribution of the Earth-approaching asteroids, Astro- phys. J. 407, 412–427.ADSCrossRefGoogle Scholar
  58. Rabinowitz, D., Bowell, E., Shoemaker, E. and Muinonen, K. (1994) The population of Earth-crossing asteroids, in Hazards due to Comets and Asteroids, (Ed. T. Gehrels), University of Arizona Press, Tucson, pp. 285–312.Google Scholar
  59. Rabinowitz, D.L.(1997) Are main-belt asteroids a sufficient source for the Earth-approaching asteroids? Part II. Predicted vs observed size distribution, Icarus 130, 287–295.ADSCrossRefGoogle Scholar
  60. Roddy, D.J. (1978) Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientation of joints, faults, and walls at Meteor Crater, Arizona, Proc. Lunar. Sci. Conf. 9th, Pergamon Press, NY, pp. 3891–3930.Google Scholar
  61. Roddy, D.J., Pepin, R.O. and Merrill, R.B., eds. (1977) Impact and Explosion cratering. Pergamon Press, N.Y. 1301 pp.Google Scholar
  62. Ronca, L.B., Basilevsky, A.T., Kryuchkov, V.P. and Ivanov, B.A. (1981). Lunar craters evolution and meteoroidal flux in pre-mare and post-mare times, The Moon and the Planets 245, 209–229.ADSCrossRefGoogle Scholar
  63. Schmidt, R.M. and Housen, K.R. (1987) Some Recent Advances in the Scaling of Impact and Explosion Cratering, Int. J. Impact Engng. 5, 543–560.ADSCrossRefGoogle Scholar
  64. Schmidt, R.M. (1980) Meteor Crater: Energy of formation-implications of centrifuge scaling, in Proc. Lunar Planet. Sci. Conf. 11th, pp. 2099–2128.Google Scholar
  65. Shoemaker, E.M. and Wolfe, R. (1982) Cratering time scales for the Galilean satellites, in Satellites of Jupiter, (Ed. D. Morrison), Univ. of Arizona Press, Tucson, pp. 277–339.Google Scholar
  66. Shoemaker, E.M. (1977) Astronomically observable crater-forming projectiles, in Impact and Explosion Cratering, (Eds. D.J. Roddy, R.O. Pepin, and R.B. Merrill), Pergamon Press, New York, pp. 639–656.Google Scholar
  67. Strom, R. (1977) Origin and relative age of lunar and mercurian inter-crater plains, Phys. Earth Planet. Interiors 15, 156–172ADSCrossRefGoogle Scholar
  68. Strom, R.G. and Neukum, G. (1988) The cratering record on Mercury and the origin of impacting objects, in Mercury, (Vilas, F., Chapman, C.R. and Matthews, M.S., eds.), Univ. of Arizona Press, Tucson, pp. 336–373.Google Scholar
  69. van Houten, C.J., van Houten-Groeneveld, I., Herget, P. and Gehrels, T. (1970) The Palomar-Leiden survey of faint minor planets, Astron. Astrophys. Suppl. 2, 339–448.Google Scholar
  70. Veverka, J. and 16 co-authors (1997) NEAR’s flyby of 253 Mathilde: Images of a C asteroid, Science 278, 2109–2114.ADSCrossRefGoogle Scholar
  71. Wagner, R. and Neukum, G. (1999) Impact crater count on Mathilde, Abstracts presented to the EGS XXIV General Assembly, The Hague, 1999, 185.Google Scholar
  72. Yeomans, D.K. and 12 co-authors (1997) Estimating the mass of asteroid 253 Mathilde from tracing data during the NEAR flyby, Science 278, 2106–2109.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • B. A. Ivanov
    • 1
  • G. Neukum
    • 2
  • R. Wagner
    • 2
  1. 1.Institute for Dynamics of GeospheresRussian Academy of SciencesMoscowRussia
  2. 2.DLR Institute for Planetary ExplorationBerlinGermany

Personalised recommendations