Experiments with Discrete Breathers in Josephson Arrays

  • A. V. Ustinov
Part of the NATO Science Series book series (NAII, volume 45)


The review describes expérimentai observations of intrinsic localized modes called discrete breathers in nonlinear lattices made of Josephson junctions. At first, basic facts about Josephson junctions and properties of arrays made of such junctions are explained. A theoretical model that describes Josephson ladder arrays is discussed along with the physical range of its parameters such as discreteness, damping and anisotropy. Finally, recently published observations of discrete breathers are reviewed and possible new experiments that can be done in the near future are proposed.

Key words

Discrete breather intrinsic localized mode nonlinear oscillator rotobreather Josephson junction superconductivity Josephson array Josephson ladder laser scanning microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).CrossRefGoogle Scholar
  2. [2]
    S. Takeno and M. Peyrard, Physica D 92, 140 (1996).CrossRefzbMATHGoogle Scholar
  3. [3]
    S. Aubry, Physica D 103, 201 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).MathSciNetCrossRefGoogle Scholar
  5. [5]
    B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, Phys. Rev. Lett. 82, 3288 (1999).CrossRefGoogle Scholar
  6. [6]
    U. T. Schwarz, L. Q. English, and A. J. Sievers, Phys. Rev. Lett. 83, 223 (1999).CrossRefGoogle Scholar
  7. [7]
    H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).CrossRefGoogle Scholar
  8. [8]
    L. M. Floría, J. L. Marin, P. J. Martinez, F. Falo, and S. Aubry, Europhys. Lett. 36, 539 (1996).CrossRefGoogle Scholar
  9. [9]
    S. Flach and M. Spicci, J. Phys.: Condens. Matter 11, 321 (1999).CrossRefGoogle Scholar
  10. [10]
    J. J. Mazo, E. Trías, and T. P. Orlando, Phys. Rev. B 59, 13604 (1999).CrossRefGoogle Scholar
  11. [11]
    E. Trías, J. J. Mazo, and T. P. Orlando, Phys. Rev. Lett. 84, 741 (2000).CrossRefGoogle Scholar
  12. [12]
    P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000).CrossRefGoogle Scholar
  13. [13]
    P. Binder, D. Abraimov, A. V. Ustinov, Phys. Rev. E 62, 2858 (2000).CrossRefGoogle Scholar
  14. [14]
    A. Barone and G. Paternó, Physics and Applications of the Josephson Effect (Wiley: New York, 1982).CrossRefGoogle Scholar
  15. [15]
    HYPRES Inc., Elmsford, NY 10523, USA ( Scholar
  16. [16]
    A. G. Sivakov, A. P. Zhuravel’, O. G. Turutanov, I. M. Dmitrenko, Appl. Surf. Sci. 106, 390 (1996).CrossRefGoogle Scholar
  17. [17]
    P. M. Shadrin, Y. Y. Divin, S. Keil, J. Martin, and R. P. Huebener, IEEE Trans. Appl. Supercond. 9, 3925 (1998).CrossRefGoogle Scholar
  18. [18]
    D. Abraimov, P. Caputo, G. Filatrella, M. V. Fistul, G. Yu. Logvenov, and A. V. Ustinov, Phys. Rev. Lett. 83, 5354 (1999).CrossRefGoogle Scholar
  19. [19]
    R. T. Giles and F. V. Kusmartsev. Switching and symmetry breaking behaviour of discrete breathers in Josephson ladders, cond-mat/0004078 (April 2000).Google Scholar
  20. [20]
    E. Trías, J. J. Mazo, A. Brinkman, and T. P. Orlando. Physica D 156, 98 (2001).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • A. V. Ustinov
    • 1
  1. 1.Physikalisches InstitutUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations