Advertisement

1H, 13C, and l29Xe NMR Study of Changing Pore Size and Tortuosity During Deactivation and Decoking of A Naphtha Reforming Catalyst

  • X.-H. Ren
  • M. Bertmer
  • H. Kühn
  • S. Stapf
  • D. E. Demco
  • B. Blümich
  • C. Kern
  • A. Jess
Chapter
Part of the NATO Science Series book series (NAII, volume 76)

Abstract

Proton, 13C, and 129Xe NMR were applied for characterizing the change of the tortuosity, the chemical structure of the coke, as well as the pore size during the deactivation and decoking of a commercial naphtha reforming catalyst (Pt/Re-Al2O3). All experimental evidence indicates that a full recovery of the activity of the clean catalyst is not achieved by the regeneration process, and that the quality of regeneration depends on the coke content reached during the deactivation/regeneration cycle.

Keywords

Coke Formation Fresh Catalyst Coke Content Reactive Coke Clean Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, A. T. and Pines, A. (1994) NMR techniques in catalysis, Marcel Dekker, New York.Google Scholar
  2. 2.
    Bonardet, J. L., Barrage, M. C., and Fraissard, J. (1995) Use of NMR techniques for studying deactivation of zeolite by coking. J Mol. Catal. A: Chemical 96, 123–143.CrossRefGoogle Scholar
  3. 3.
    Paweewan, B., Barrie, P. J., and Gladden, L. F. (1999) Coking and deactivation during n-hexane cracking in ultrastable zeolite Y. Appl. Catal. A: General 185, 259–268.CrossRefGoogle Scholar
  4. 4.
    Callaghan, P. T. (1991) Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford.Google Scholar
  5. 5.
    Kimmich, R. (1997) NMR Tomography, Diffusometry, Relaxometry. Springer, Berlin.Google Scholar
  6. 6.
    Blümich, B. (2000) NMR imaging of materials, Oxford University Press, Oxford.Google Scholar
  7. 7.
    Cotts, R. M., Hoch, M. J. R., Sun, T., and Markert, J. T. (1989) Pulsed field stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson. 83, 252–266.Google Scholar
  8. 8.
    Parere, J. M. (1991) in C. H. Bartholomew and J. B. Butt (eds.) Catalyst Deactivation. Elsevier Science Publ. B.V., Amsterdam, pp. 103–110.Google Scholar
  9. 9.
    Jess, A., Hein, O., and Kern, C. (1999) Deactivation and decoking of a naphtha reforming catalyst. Study in Surface Science and Catalysis, Elsevier Science, Amsterdam, pp. 81–88.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • X.-H. Ren
    • 1
  • M. Bertmer
    • 1
  • H. Kühn
    • 1
  • S. Stapf
    • 1
  • D. E. Demco
    • 1
  • B. Blümich
    • 1
  • C. Kern
    • 1
  • A. Jess
    • 1
  1. 1.Institut für Technische Chemie und Makromolekulare ChemieRheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations