Lichen Monitoring and Climate Change

  • G. Insarov
  • B. Schroeter
Part of the NATO Science Series book series (NAIV, volume 7)


Anthropogenic increase in the concentration of greenhouse gases is leading to warming of the Earth’s surface and other climatic changes. Current projections issued by the Intergovernmental Panel on Climate Change (IPCC) are based on a number of global climate models and scenarios described in the IPCC Second Assessment Report (SAR) volume [22]. We summarise briefly resulting projections of climate change as follows.


Biomass Hydrate Ozone Respiration Aldehyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arseneau, M.-J., Sirois, L., and Ouellet, J.-P. (1997) Effects of altitude and tree height on the distribution and biomass of fruticose arboreal lichens in an old growth balsam fir forest, Ecoscience 4, 206–213.Google Scholar
  2. 2.
    Arft, A.M., Walker, M.D., Turner, P.L., Gurevitch, J., Alatalo, J.M., Molau, U., Nordenhäll, U., Stenström, A., Stenström, M., Bret-Harte, M.S., Dale, M., Diemer, M., Gugerli, F., Henry, G.H.R., Jones, M.H., Hollister, R.D., Walker, L.J., Webber, P.J., Jónsdóttir, I.S., Laine, K., Lévesque, E., Marion, G.M., Mølgaard, P., Raszhivin, V., Starr, G., Totland, Ø., Welker, J.M., and Wookey, P.A. (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment, Ecological Monographs 69(4), 491–511.Google Scholar
  3. 3.
    Bråkenhielm, S. and Qinghong, L. (1995) Spatial and temporal variability of algal and lichen epiphytes on trees in relation to pollutant deposition in Sweden, Water, Air and Soil Pollution 79, 61–74.CrossRefGoogle Scholar
  4. 4.
    Chu, F.J., Seaward, M.R.D., and Hodgkiss, I.J. (2000) Effects of wave exposure and aspect on Hong-Kong supralittoral lichens, Lichenologist 32(2), 155–170.CrossRefGoogle Scholar
  5. 5.
    Crump, R. (2000) Lichen monitoring in West Angle Bay, in Lichen Monitoring, Abstracts of NATO Advanced Research Workshop, 16-11.8 2000, Orielton Field Centre, Pembroke, p. 11.Google Scholar
  6. 6.
    Danin, A. (1983) Desert vegetation of Israel and Sinai, Cana Publishing House, Jerusalem.Google Scholar
  7. 7.
    Dietrich, M. and Scheidegger, C. (1996) Diversität und Zeigerwerte von epiphytischen Flechten der häufigsten Baumarten: Ein methodischer Ansatz zur Beurteilung von Umweltveränderungen im Wald und im Freiland, Botanica Helvetica 106, 85–102.Google Scholar
  8. 8.
    Dietrich, M. and Scheidegger, C. (1996) The importance of sorediate crustose lichens in the epiphytic lichen flora of the Swiss Plateau and the Pre-Alps, Lichenologist 28(3), 245–256.Google Scholar
  9. 9.
    Esseen, P.-A. and Renhorn, K.-E. (1998) Edge effects on an epiphytic lichen in fragmented forests, Conservation Biology 12, 1307–1317.CrossRefGoogle Scholar
  10. 10.
    Fletcher, A. (1973) The ecology of marine (littoral) lichens on some rocky shores of Anglesey, Lichenologist 5, 368–400.CrossRefGoogle Scholar
  11. 11.
    Follmann, G. (1995) On the impoverishment of the lichen flora and the retrogression of the lichen vegetation in coastal central and northern Chile during the last decades, Cryptogamic Botany 5, 224–231.Google Scholar
  12. 12.
    Fryday, A.M. (2001) The lichen vegetation associated with areas of late snow-lie in the Scottish Highlands, Lichenologist 33(2), 121–150.CrossRefGoogle Scholar
  13. 13.
    Geiser, L. (2000) Air Quality Biomonitoring Program on National Forests of the Pacific Northwest, Scholar
  14. 14.
    GLORIA (2000) Global Observation Research Initiative in Alpine Environments, Scholar
  15. 15.
    Green, T.G.A. and Lange, O.L. (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes, in E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of Photosynthesis, Springer Verlag, Berlin etc., pp. 319–341.Google Scholar
  16. 16.
    Green, T.G.A., Schroeter, B., and Sancho, L.G. (1999) Plant life in Antarctica, in F.I. Pugnaire and F. Valladares (eds.), Handbook of Functional Plant Ecology, Marcel Dekker Inc., New York-Basel, pp. 495–543.Google Scholar
  17. 17.
    Hahn, S.C., Oberbauer, S.F., Gebauer, R., Grulke, N.E., Lange, O.L., and Tenhunen, J.D. (1996) Vegetation structure and aboveground carbon and nutrient pools in the Imnavait Creek watershed, in J.F. Reynolds and J.D. Tenhunen (eds.), Ecological Studies 120, Springer-Verlag, Berlin-Heidelberg, pp. 109–128.Google Scholar
  18. 18.
    Hansen, E.S. (2000) A comparison among the lichen floras of three climatically different localities in south west Greenland, Mycotaxon 74, 429–445.Google Scholar
  19. 19.
    Hawksworth, D.L. and Seaward, M.R.D. (1990) Twenty-five years of lichen mapping in Great Britain and Ireland, Stuttgarter Beiträge zur Naturkunde, Ser. A 456, 5–10.Google Scholar
  20. 20.
    Holien, H. (1996), Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area in central Norway, Lichenologist 28(4), 315–330.Google Scholar
  21. 21.
    Holten, J.I. and Carey, P.D. (1992) Responses of climate change on natural terrestrial ecosystems in Norway, Norsk Institutt for Naturforskning, Trondheim, 59 pp.Google Scholar
  22. 22.
    Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (eds.) (1996) Climate change 1995. The science of climate change, University Press, Cambridge.Google Scholar
  23. 23.
    Hudges, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15(2), 56–61.CrossRefGoogle Scholar
  24. 24.
    Hulme, M., Mitchell, J., Ingram, W., Lowe, J., Johns, T., New, M., and Viner, D. (1999) Climate change scenarios for global impacts studies, Global Environmental Change 9, S3–S19.CrossRefGoogle Scholar
  25. 25.
    Insarov, G. (1982) Epiphytic lichen sampling on tree trunks, in Problems of Ecological Monitoring and Ecosystem Modelling, Gidrometeoizdat Publisher, Leningrad, 5, 25–33 (in Russian, summary in English).Google Scholar
  26. 26.
    Insarov, G.E., Filippova, L.M., and Semenov, S.M. (1986) The Methods of Assessment of Epiphytic Lichen Flora State in Relation to Background Natural Environment Pollution, in Y.A. Izrael (ed.), Research on Environmental Pollution and its Effects on the Biosphere. Proc. Third Meeting of the International Working Group on UNESCO MAB Project No 14, 29 March-30 April 1985, Yalta, USSR, Gidrometeoizdat Publishers, Leningrad, pp. 123–131.Google Scholar
  27. 27.
    Insarov, G. and Insarova, I. (1995) The lichens of calcareous rocks in the Central Negev, Israel, Israel Journal of Plant Sciences 43: 53–62.Google Scholar
  28. 28.
    Insarov, G. and Insarova, I. (1996) Assessment of lichen sensitivity to climate change, Israel Journal of Plant Sciences 44, 309–334.Google Scholar
  29. 29.
    Insarov, G. and Insarova, I. (in press) Long-term monitoring of lichen communities response to climate change and diversity of lichens in the Central Negev Highlands, Israel, Bibliotheca Lichenologica.Google Scholar
  30. 30.
    Insarov, G.E. and Pchiolkin, A.V. (1985) Quantitative characteristics of the epiphytic lichen flora stale in the Kandalaksha nature reserve, Ail-Union Institute for Gidrological and Meteorological Information-World Data Center and Nature Environment and Climate Monitoring Laboratory, Moscow (in Russian).Google Scholar
  31. 31.
    Insarov, G.E. and Pchiolkin, A.V. (1989) Quantitative characteristics of the epiphytic lichen flora state in the Sokhondo nature reserve, Nature Environment and Climate Monitoring Laboratory, Moscow (in Russian).Google Scholar
  32. 32.
    Insarov, G. and Semenov, S. (1993) Evaluation of epiphytic lichen monitoring data, in J. Cerny (ed.), Symposium on Ecosystems Behaviour: Evaluation of Integrated Monitoring in Small Catchments, Czech Geological Survey Publisher, Prague, pp. 136–137.Google Scholar
  33. 33.
    Insarov, G., S. Semenov and Insarova, I. (1999) A system to monitor climate change with epilithic lichens, Environmental Monitoring and Assessment 55(2), 279–298.CrossRefGoogle Scholar
  34. 34.
    Insarov, G.E. (in press) Monitoring of epiphytic lichens exposed to background air pollution: Conservation implications, Forest Snow and Landscape Research.Google Scholar
  35. 35.
    Insarova, I.D. and Pchiolkin, A.V. (1988) Comparison of epiphytic lichen flora characteristics in three Central Asia nature reserves, in Problems of Ecological Monitoring and Ecosystem Modelling, Gidrometeoizdat Publisher, Leningrad, 11, 97–104 (in Russian, summary in English).Google Scholar
  36. 36.
    Iverson, L.R. and Prasad, A.M. (1998) Predicting abundance of 80 tree species following climate change in the Eastern United States, Ecological Monographs 68(4), 465–485.CrossRefGoogle Scholar
  37. 37.
    Izrael, Y.A., Filippova, L.M., Semevsky, F.N., Semenov, S.M., and Insarov, G.E. (1978) On principles of ecological monitoring of environment under background air pollution, Proceedings of the USSR Academy of Science 241, 253–255 (in Russian).Google Scholar
  38. 38.
    Izrael, Y.A., Filippova L.M., Insarov G.E., Semevsky F.N., and Semenov S.M. (1985) Background Monitoring and Analysis of the Reasons of Global Changes in Biota State, in Problems of Ecological Monitoring and Ecosystem Modelling, Gidrometeoizdat Publishers, Leningrad, 7, 9–26 (in Russian, summary in English).Google Scholar
  39. 39.
    Izrael, Y.A., Filippova, L.M., Insarov, G.E., Semevsky, F.N., and S.M. Semenov (1986) Methodological aspects of implementing terrestrial biota background monitoring, in Problems of Ecological Monitoring and Ecosystem Modelling 9, 7–21, Gidrometeoizdat Publisher, Leningrad (in Russian, summary in English).Google Scholar
  40. 40.
    Kappen, L. (1988) Ecophysiological relationships in different climatic regions, in M. Galun (ed.), CRC Handbook of Lichenology, Vol. II, CRC Press, Boca Raton, Florida, pp. 37–99.Google Scholar
  41. 41.
    Kappen, L. (1993) Lichens in the Antarctic region, in E.I. Friedmann (ed.), Antarctic Microbiology, Wiley-Liss, New York, 433–490.Google Scholar
  42. 42.
    Kershaw, K.A. (1985) Physiological ecology of lichens, Cambridge University Press, Cambridge, 279 pp.Google Scholar
  43. 43.
    Kivistö, L. and Kuusinen, M. (2000) Edge effects on the epiphytic lichen flora of Picea abies in middle boreal Finland, Lichenologist 32(4), 37–398.CrossRefGoogle Scholar
  44. 44.
    Kuusinen, M., Mikkola, K., and Jukola-Sulonen, E.-L. (1990) Epiphytic lichens on conifers in the 1960’s to 1980’s in Finland, in P. Kauppi. P. Anttila, and K. Kenttämies (eds.), Acidification in Finland, Springer-Verlag, Berlin, pp. 397–420.CrossRefGoogle Scholar
  45. 45.
    Lange, O.L. (1988) Ecophysiology of photosynthesis: Performance of poikilohydric lichens and homoiohydric Mediterranean sclerophylls, Journal of Ecology 76, 915–937.CrossRefGoogle Scholar
  46. 46.
    Lange, O.L., Schulze, E.D., and Koch, W. (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode, Flora 159, 38–62.Google Scholar
  47. 47.
    Loppi, S., Pirintsos, S.A., and De Dominicis, V. (1997) Analysis of the distribution of epiphytic lichens on Quercus pubescens along an altitudinal gradient in a Mediterranean area (Tuscany, central Italy), Israel Journal of Plant Sciences 45, 53–58.Google Scholar
  48. 48.
    Magomedova, M.A. (1986) The altitudinal distribution of lichens along the mountain “Kosvinsky kamen”, in P.L. Gorchakovsky (ed.), Flora and vegetation of protected areas. The Ural Scientific Centre of the USSR Academy of Science, Sverdlovsk, pp. 103–118 (in Russian).Google Scholar
  49. 49.
    McCarthy, D.P. (1997) Habitat selection and ecology of Xanthoria elegans (Link.) Th.Fr. in glacier forefields: implications for lichenometry, Journal of Biogeography 24, 363–373.CrossRefGoogle Scholar
  50. 50.
    McCarthy, D.P. (1999) A biological basis for lichenometry? Journal of Biogeography 26, 379–386.CrossRefGoogle Scholar
  51. 51.
    McCune, B., Dey, J., Peck, J., Heiman, K., and Will-Wolf, S. (1997) Regional gradients in lichen communities of the southeast United States, The Bryologist 100(2), 145–158.Google Scholar
  52. 52.
    Melick, D.R. and Seppelt, R.D. (1997) Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica, Journal of Ecology 85(1), 43–56.CrossRefGoogle Scholar
  53. 53.
    Nash III, T.H. and Olafsen, A.G. (1995) Climate change and the ecophysiological response of Arctic lichens, Lichenologist 27(6), 559–565.CrossRefGoogle Scholar
  54. 54.
    Nimis P.L. (2000) Checklist of the Lichens of Italy 2.0, University of Trieste, Dept. of Biology, IN2.0/2, Scholar
  55. 55.
    Pirintsos, S.A., Diamantopoulos, J., and Stamou, G.P. (1993) Analysis of the vertical distribution of epiphytic lichens on Pinus nigra (Mount Olympos, Greece) along an altitudinal gradient, Vegetatio 109(1), 63–70.CrossRefGoogle Scholar
  56. 56.
    Pirintsos, S.A., Diamantopoulos, J., and Stamou, G.P. (1995) Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece), Vegetatio 116(1), 33–40.Google Scholar
  57. 57.
    RiSCC (2000) Regional Sensitivity to Climate Change in Antarctic Terrestrial Ecosystems. An International Research Program on Antarctic and Peri-Antarctic Terrestrial and Limnetic Organisms and Ecosystems, Scholar
  58. 58.
    Robinson, A.L., Vitt, D.H., and Timoney, K.P. (1989) Patterns of community structure and morphology of bryophytes and lichens relative to edaphic gradients in the subarctic forest-tundra of northwestern Canada, The Bryologist 92(4), 495–512.CrossRefGoogle Scholar
  59. 59.
    Ryan, B.D. (1988) Zonation of lichens on a rocky seashore on Fidalgo Island, Washington, The Bryologist 91(3), 167–180.CrossRefGoogle Scholar
  60. 60.
    Sancho, L.G., Pintado, A., Valladares, F., Schroeter B., and Schiensog M. (1997) Photosynthetic performance of cosmopolitan lichens in the maritime Antarctic, Bibliotheca Lichenologica 67, 197–210.Google Scholar
  61. 61.
    Sancho. L.G. and Valladares, F. (1993) Lichen colonization of recent moraines on Livingston Island (South Shetland I., Antarctica), Polar Biology 13, 227–233.CrossRefGoogle Scholar
  62. 62.
    Schroeter, B., Olech, A., Kappen, L., and Heitland, W. (1995) Ecophysiological investigations of Usnea antarctica in the maritime Antarctic. I. Annual microclimatic conditions and potential primary production, Antarctic Science 7, 251–260.CrossRefGoogle Scholar
  63. 63.
    Schroeter, B., Kappen, L., Schulz, F., and Sancho, L.G. (2000) Seasonal variation in the carbon balance of lichens in the maritime Antarctic: Long-term measurements of photosynthetic activity in Usnea aurantiaco-atra, in W. Davison, C. Howard-Williams, and P. Broady (eds.), Antarctic ecosystems: Models for wider ecological understanding, Caxton Press, Christchurch, pp. 258–262.Google Scholar
  64. 64.
    Schubert, R. (1973) Notizen zur Flechtenflora des nördlichen Mesopotamien (Irak), Feddes Repertorium. 83, 585–589.CrossRefGoogle Scholar
  65. 65.
    Seaward, M.R.D. (1998) Time-space analyses of the British lichen flora, with particular reference to air quality surveys, Folia Cryptogamica Estonica 32, 85–96.Google Scholar
  66. 66.
    Smith, R.I.L. (1994) Vascular plants as bioindicators of regional warming in Antarctica, Oecologia 99, 322–328.CrossRefGoogle Scholar
  67. 67.
    Smith, R.C. and Stammerjohn, S.E. (1996) Surface air temperature variations in the western Antarctic Peninsula region, Foundations for Ecological Research West of the Antarctic Peninsula/Antarctic Research Series 70, 105–121.CrossRefGoogle Scholar
  68. 68.
    Spellberg, I.F. (1991) Monitoring ecological changes, Cambridge University Press, Cambridge.Google Scholar
  69. 69.
    Takhtadjyan, A.L. (1986) Floristic regions of the world, California UP, Berkeley-Los Angeles-London.Google Scholar
  70. 70.
    Trunk epiphytes (1998), in Manual for Integrated Monitoring, UN ECE Convention on Long-Range Transboundary Air Pollution, International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems, ICP IM Programme Centre, Finnish Environment Institute, Helsinki, Scholar
  71. 71.
    Watson, R.T., Zinyowera, M.C., and Moss, R.H. (eds.) (1996) Climate change 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses, Cambridge University Press, Cambridge.Google Scholar
  72. 72.
    Watson, R.T., Zinyowera, M.C., and Moss, R.H. (eds.) (1998) The regional impacts of climate change. An assessment of vulnerability, Published for the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
  73. 73.
    Watson, R.T., Noble LR., Bolin, B., Ravindranath, N.H., Verardo, D.J, and Dokken, DJ. (eds.) (2000) Land use, land-use change, and Forestry, Cambridge University Press, Cambridge.Google Scholar
  74. 74.
    Weber, W.A. and Beck, H.T. (1985) Effects on cryptogamic vegetation, in G. Robinson, and E.M. Pino (eds.), El Niño en las Islas Galápagos, El evento de 1982-1983, Quito, pp. 343–361.Google Scholar
  75. 75.
    Wilske, B. and Kesselmeier, J. (1999) First measurements of the C1-and C2-organic acids and aldehydes exchange between boreal lichens and the atmosphere, Plant, Cell and Environment 24(6), 725–728.Google Scholar
  76. 76.
    Zobel, K. (1988) The indicator value of a set of lichen species assessed with the help of log-linear models, Lichenologist 20(1), 83–92.CrossRefGoogle Scholar
  77. 77.
    Zohary, M. (1962) Plant life of Palestine, Ronald Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Insarov
    • 1
  • B. Schroeter
    • 2
  1. 1.Institute of Global Climate and EcologyMoscowRussia
  2. 2.Botanisches InstitutUniversität KielD-24098KielGermany

Personalised recommendations