The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations

  • H. Berestycki
Part of the NATO Science Series book series (ASIC, volume 569)


Propagation of fronts is a phenomenon which plays a central role in a varied array of different fields. Front solutions in combustion represent propagating flames in particular in the setting of deflagrations in premixed gases (see e.g. [13, 68]). In physics and chemistry, more generally, propagating fronts describe phase transitions as a steady transformation taking place at a well defined velocity. Biological invasions or changes in populations are also often modelled as fronts (see e.g. [26], [53] and [62]). Propagation of fronts and of pulses appears indeed to be a very general phenomenon in excitable media.


Planar Front Critical Speed Flame Propagation Periodic Medium Turbulent Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Aronson, H.F. Weinberger: 1975, Nonlinear diffusion in population genetics, combustion and nerve propagation, Part. Diff. Eq. and related topics, Lectures Notes in Math. 446, Springer, New York, 5–49.CrossRefGoogle Scholar
  2. 2.
    D.G. Aronson, H.F. Weinberger: 1978, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30, 33–76.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    B. Audoly, H. Berestycki, Y. Pomeau: 2000, Réaction-diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Paris II 328, 255–262.MATHGoogle Scholar
  4. 4.
    M. Avellaneda, A.J. Majda: 1990, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131, 381–429.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. Avellaneda, A.J. Majda: 1991, An integral representation and bounds of the effective diffusivity in passive advection by laminar and turbulent flows, Comm. Math. Phys. 138, 339–391.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    M. Avellaneda, A.J. Majda: 1994, Simple examples with features of renormalization for turbulent transport, Phil. Trans. Royal Soc. London 346 A, 205–233.MathSciNetGoogle Scholar
  7. 7.
    H. Berestycki, L. Caffarelli, L. Nirenberg: 1990, Uniform estimates for regularisation of free boundary problems, In Anal. and Part. Diff. Eq., editors C. Sadosky & M. Decker, 567–617.Google Scholar
  8. 8.
    H. Berestycki, F. Hamel: 2000, Non existence of traveling front solutions for some bistable reaction-diffusion equations. Adv. in Diff. Eq. 5, 723–746.MathSciNetMATHGoogle Scholar
  9. 9.
    H. Berestycki, F. Hamel: 2002, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55, 949–1032.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems in periodic domains. In preparation.Google Scholar
  11. 11.
    H. Berestycki, F. Hamel, N. Nadirashvili, The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena. In preparation.Google Scholar
  12. 12.
    H. Berestycki, F. Hamel, L. Roques: Analysis of the periodic patch model for ecological conservation and biological invasion in heterogeneous environment. In preparation.Google Scholar
  13. 13.
    H. Berestycki, B. Larrouturou: 1996, La modélisation et les mathématiques de la combustion. In Modélisation de la Combustion, special edition of Images des Mathématiques, CNRS, Paris, 9–26.Google Scholar
  14. 14.
    H. Berestycki, B. Larrouturou, P.-L. Lions: 1990, Multidimensional traveling-wave solutions of a flame propagation model, Arch. Rat. Mech. Anal. 111, 33–49.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    H. Berestycki, B. Larrouturou, J.-M. Roquejoffre: 1991, Mathematical investigation of the cold boundary difficulty in flame propagation theory. Dynamical issues in combustion theory, IMA Vol. Math. Appl. 35, Springer, New York, 37–61.CrossRefGoogle Scholar
  16. 16.
    H. Berestycki, B. Larrouturou, J.-M. Roquejoffre: 1992, Stability of traveling fronts in a curved flame model, Part I, Linear analysis, Arch. Rat. Mech. Anal. 117, 97–117.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    H. Berestycki, L. Nirenberg: 1991, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22, 1–37.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    H. Berestycki, L. Nirenberg: 1992, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal, non Lin. 9, 497–572.MathSciNetMATHGoogle Scholar
  19. 19.
    M. Bramson: 1983, Convergence of solutions of the Kolmogorov equation to traveling waves, Memoirs Amer. Math. Soc. 44.Google Scholar
  20. 20.
    R.G. Casten, C. Holland: 1978, Instability results for reaction-diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27, 266–273.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    P. Clavin, F.A. Williams: 1979, Theory of premixed flame propagation in large-scale turbulence, J. Fluid. Mech. 90, 589–604.MATHCrossRefGoogle Scholar
  22. 22.
    P. Constantin, A. Kiselev, A. Oberman, L. Ryzhik: 2000, Bulk burning rate in passive-reactive diffusion, Arch. Rat. Mech. Anal. 154, 53–91.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    P. Constantin, A. Kiselev, L. Ryzhik: 2001, Quenching of flames by fluid advection, Comm. Pure Appl. Math., 54, 1320–1342.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    U. Ebert and W. van Saarloos: 2000, Some fronts are more equal than others, Physica D 146, p. 1.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    A. Fannjiang, G. Papanicolaou: 1994, Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54, 333–408.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    P.C. Fife: 1979, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer Verlag.Google Scholar
  27. 27.
    P.C. Fife, J.B. McLeod: 1977, The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal. 65, 335–361.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    R.A. Fisher: 1937, The advance of advantageous genes, Ann. Eugenics 7, 335–369.Google Scholar
  29. 29.
    M. Freidlin: 1984, On wavefront propagation in periodic media, in Stochastic analysis and applications, editor M. Pinsky, Advances in Probability and related topics 7, M. Dekker, New-York, 147–166.Google Scholar
  30. 30.
    M. Freidlin: 1985, Functional integration and partial differential equations, Ann. of Math. Studies, Princeton University Press.Google Scholar
  31. 31.
    M. Freidlin: 1995, Wave front propagation for KPP equations, Surveys in Appl. Maths 2, Plenum, New York, 1–62.CrossRefGoogle Scholar
  32. 32.
    J. Gärtner, M. Freidlin: 1979, On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl. 20, 1282–1286.MATHGoogle Scholar
  33. 33.
    K.P. Hadeler, F. Rothe: 1975, Travelling fronts in nonlinear diffusion equations, J. Math. Biology 2, 251–263.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    F. Hamel: 1999, Formules min-max pour les vitesses d’ondes progressives multidi-mensionnelles, Ann. Fac. Sci. Toulouse 8, 259–280.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    F. Hamel, N. Nadirashvili: 2001, Travelling waves and entire solutions of the Fisher-KPP equation in N, Arch. Ration. Mech. Anal., 157, 91–163.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    P.S. Hagan: 1982, Travelling wave and multiple traveling wave solutions of parabolic equations, SIAM J. Math. Anal. 13, 717–738.MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    S. Heinze: 1993, Homogenization of flame fronts, Preprint IWR, Heidelberg.Google Scholar
  38. 38.
    S. Heinze: 2001, Wave solution for reaction-diffusion systems in perforated domains, Z. Anal. Anwendungen 20, 661–670.MathSciNetMATHGoogle Scholar
  39. 39.
    S. Heinze: 2002, Habilitationsschrift, Heidelberg, 2002.Google Scholar
  40. 40.
    S. Heinze, G. Papanicolaou, A. Stevens, Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., to appear.Google Scholar
  41. 41.
    W. Hudson, B. Zinner: 1995, Existence of traveling waves for reaction-diffusion equations of Fisher type in periodic media, In: Boundary Problems for Functional Differential Equations, World Scientific, 187–199.Google Scholar
  42. 42.
    C.K.R.T. Jones: 1983, Spherically symmetric solutions of a reaction-diffusion equation, J. Diff. Eq., 49(1), 142–169.MATHCrossRefGoogle Scholar
  43. 43.
    C.K.R.T. Jones: 1983, Asymptotic behavior of a reaction-diffudion equation, Rocky Mountain J. Math. 13, 355–364.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ya.I. Kanel’: 1961, Certain problems of burning-theory equations, Sov. Math. Dokl. 2, 48–51.MathSciNetMATHGoogle Scholar
  45. 45.
    A. Kiselev, L. Ryzhik: 2001, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré, Analyse Non Lin. 18, 309–358.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov: 1937, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d’Etat à Moscou (Bjul. Moskowskogo Gos. Univ.) A 1, 1–26. See English translation in: 1998, Dynamics of curved fronts, editor P. Pelcé, Academic Press, 105-130.Google Scholar
  47. 47.
    K.S. Lau: 1985, On the nonlinear diffusion equation of Kolmogorov, Petrovskii, and Piskunov, J. Diff. Eq. 59(1), 44–70.MATHCrossRefGoogle Scholar
  48. 48.
    A.J. Majda, R.M. McLaughlin: 1993, The effect of mean flows on enhanced diffu-sivity in transport by incompressible periodic velocity fields, Stud. Appl. Math. 89, 245–279.MathSciNetMATHGoogle Scholar
  49. 49.
    A.J. Majda, P.E. Souganidis: 1994, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7, 1–30.MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    A.J. Majda, P.E. Souganidis: 1998, Flame fronts in a turbulent combustion model with fractal velocity fields, it Comm. Pure Appl. Math. 51, 1337–1348.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    J.-F. Mallordy, J.-M. Roquejoffre: 1995, A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal. 26, 1–20.MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    H. Matano: May 2001, Traveling waves in spatially inhomogeneous diffusive media-the non periodic case, Proc. of the fifth Mississipi State Conf. in Differential Equ. and Computer Sim. See also: Traveling waves in spatially almost periodic media. In preparation.Google Scholar
  53. 53.
    J.D. Murray: 1989, Mathematical Biology, Springer-Verlag.Google Scholar
  54. 54.
    K.-I. Nakamura, Effective speed of traveling wavefronts in periodic inhomogeneous media, preprint.Google Scholar
  55. 55.
    G. Papanicolaou, X. Xin: 1991, Reaction-diffusion fronts in periodically layered media, J. Stat. Phys. 63, 915–931.MathSciNetCrossRefGoogle Scholar
  56. 56.
    P. Ronney: 1995, Some open issues in premixed turbulent combustion, In: Mathematical modelling in combustion science, Editors J. Buckmaster and T. Takeno, Lect. Notes Phys., Springer-Verlag, Berlin, 3–22.Google Scholar
  57. 57.
    J.-M. Roquejoffre: 1992, Stability of traveling fronts in a curved flame model, Part II: Non-linear orbital stability, Arch. Rat. Mech. Anal. 117, 119–153.MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    J.-M. Roquejoffre: 1997, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincaré, Anal. Non Lin. 14, 499–552.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    F. Rothe: 1981, Convergence to pushed fronts, Rocky Mountain J. Math. 11(4), 617–633.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    V. Roussier, Stability of radially symmetric solutions in reaction-diffusion equations, preprint.Google Scholar
  61. 61.
    D.H. Sattinger: 1976, Stability of waves of nonlinear parabolic systems, Adv. Math. 22, 312–355.MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    N. Shigesada, K. Kawasaki: 1997, Biological Invasions, Theory and Practice, Oxford Univ. Press, Oxford.Google Scholar
  63. 63.
    A.N. Stokes: 1977, Nonlinear diffusion waveshapes generated by possibly finite initial disturbances J. Math. Anal. Appl. 61(2), 370–381.MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    K. Uchiyama: 1978, The behavior of solutions of some semilinear diffusion equations for large time, J. Math. Kyoto Univ. 18, 453–508.MathSciNetMATHGoogle Scholar
  65. 65.
    A.I. Volpert, V.A. Volpert, V.A. Volpert: 1994, Traveling wave solutions of parabolic systems, Translations of Math. Monographs 140, Amer. Math. Society.Google Scholar
  66. 66.
    H.F. Weinberger: 1982, Long time behavior of a class of biological models, SIAM J. Math. Anal. 13, 353–396.MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    H.F. Weinberger: 2002, On spreading speeds and traveling waves for a class of periodic reaction-diffusion models, Preprint.Google Scholar
  68. 68.
    F. Williams: 1983, Combustion Theory, Addison-Wesley, Reading MA.Google Scholar
  69. 69.
    J.X. Xin: 1991, Existence and uniqueness of traveling waves in a reaction-diffusion equation with combustion nonlinearity, Indiana Univ. Math. J. 40, 985–1008.MathSciNetCrossRefGoogle Scholar
  70. 70.
    J.X. Xin: 1991, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity, J. Dyn. Diff. Eq. 3, 541–573.MATHCrossRefGoogle Scholar
  71. 71.
    J.X. Xin: 1992, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rat. Mech. Anal. 121, 205–233.MATHCrossRefGoogle Scholar
  72. 72.
    J.X. Xin: 1993, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Stat. Phys. 73, 893–926.MATHCrossRefGoogle Scholar
  73. 73.
    J.X. Xin: 1994, Existence of multidimensional traveling waves in the transport of reactive solutes through periodic porous media, Arch. Rat. Mech. Anal. 128, 75–103.MATHCrossRefGoogle Scholar
  74. 74.
    J.X. Xin: 2000, Analysis and modeling of front propagation in heterogeneous media, SIAM Review 42, 161–230.MathSciNetCrossRefGoogle Scholar
  75. 75.
    V. Yakhot: 1988, Propagation velocity of premixed turbulent flames, Comb. Sci. Tech. 60, 191–214.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Y.B. Zel’dovich: 1992, Selected works, editor J.P. Ostriker, Princeton University press, Princeton.Google Scholar
  77. 77.
    Y.B. Zeldovich, G.I. Barenblatt, V.B. Libovich, G.M. Mackviladze: 1985, The mathematical theory of combustion and explosions, Cons. Bureau, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • H. Berestycki
    • 1
  1. 1.EHESSParisFrance

Personalised recommendations