Vacuum Arc Ion Sources: Charge State Enhancement and Arc Voltage

Part of the NATO Science Series book series (NAII, volume 88)


The Metal Vapor Vacuum ion source (MEWA) has been developed for the production of ion beams for a wide range of metal ions. The ion charge states for most heavy elements created by the high current MEVVA ion source, which typically generates ions with a mean charge state up to three, have to be elevated to higher charge states for accelerator reasons at the GSI accelerator facility. Several methods are known which elevate charge states. Especially for the generation of U4+ ions a strong magnetic field and a high arc current has been used at GSI. Both methods increase the arc voltage which in turn influences the electron energy distribution and thus the mean ion charge state. Arc voltages have been measured for different settings of arc current, magnetic flux density and discharge geometry indicating the dependencies between these quantities and the arc voltage.


Charge State Anode Material Strong Magnetic Field Charge State Distribution Copper Anode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Anders, Phys. Rev. E 55(1), (1997), 696CrossRefGoogle Scholar
  2. 2.
    A. Anders, IEEE Trans. Plasma Sci. 29(2), (2001), 393ADSCrossRefGoogle Scholar
  3. 3.
    R. Hollinger, F. Heymach, P. Spädtke, Rev. Sci. Instr. 73(2), (2002), 1024ADSCrossRefGoogle Scholar
  4. 4.
    A. Anders, G. Yushkov, E. Oks, A. Nikolaev, I. Brown, Rev. Sci. Instr. 69(3), (1998), 1332ADSCrossRefGoogle Scholar
  5. 5.
    E.M. Oks et al., Appl. Phys. Lett. 67(2), (1995), 200ADSCrossRefGoogle Scholar
  6. 6.
    E. M. Oks, I.G. Brown, M.R. Dickinson,, R. A. MacGill, Rev. Sci. Instr. 67(3), (1996), 959ADSCrossRefGoogle Scholar
  7. 7.
    H. Reich, P. Spädtke, E. M. Oks, Rev. Sci. Instr. 71(2), (2000), 707ADSCrossRefGoogle Scholar
  8. 8.
    A. Anders, I. G. Brown, R. MacGill, M. Dickinson, Rev. Sci. Instr. 67(3), (1996), 1202ADSCrossRefGoogle Scholar
  9. 9.
    F. J. Paoloni and I. G. Brown, Rev. Sci. Instr. 66(7), (1995), 3855ADSCrossRefGoogle Scholar
  10. 10.
    E. M. Oks, A. Anders, I. G. Brown, M. R. Dickinson, R. A. MacGill, IEEE Trans. Plasma Sci. 24(3), (1996), 1174ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Bugaev, E. M. Oks, G, Y. Yushkov, A. Anders, I. G. Brown, Rev. Sci. Instr. 71(2), (2000), 701ADSCrossRefGoogle Scholar
  12. 12.
    A. Bugaev, V. Gushenets, G. Yushkov, Appl. Phys. Lett. 79(7), (2001), 919ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Batalin et al., Rev. Sci. Instr. 73(2), (2002), 702ADSCrossRefGoogle Scholar
  14. 14.
    M. Galonska, F. Heymach, R. Hollinger, R. Lang, P. Spädtke, unpublishedGoogle Scholar
  15. 15.
    R. Hollinger, M. Galonska, F. Heymach, P. Spädtke, (2002), MEVVA ion source for uranium high current operation at the GSI accelerator facility, to be published in the Proc. of the XXth ISDEIV, Tours, FranceGoogle Scholar
  16. 16.
    P. Spädtke et al., GSI-Scientific Report 2001, (2002), 191Google Scholar
  17. 17.
    A. Anders, B. Yotsombat, R. Binder, J. Appl. Phys. 89(12), (2001), 7764ADSCrossRefGoogle Scholar
  18. 18.
    Stöcker, ( 1994), Taschenbuch der Physik, Verlag Harri Deutsch, Frankfurt am MainzbMATHGoogle Scholar
  19. 19.
    R. Hollinger, K. Volk, H. Klein, Nucl. Instr. Meth. A 481, (2002), 86ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.Gesellschaft für Schwerionenforschung mbHDarmstadtGermany

Personalised recommendations