Patterns of inheritance of mating signals in interspecific hybrids between sailfin and shortfin mollies (Poeciliidae: Poecilia: Mollienesia)

  • Margaret B. Ptacek


Differences in male morphology and mating behaviors are thought to confer species sexual isolation between sailfin and shortfin species of mollies. This study used interspecific crosses between the sailfin molly, P. latipinna, and the shortfin molly, P. mexicana, to investigate patterns of inheritance of morphological traits and behavioral rates of three mating behaviors in F1 hybrid males. The two parental species showed clear species differences with respect to the length of the dorsal fin and dorsal fin ray number. First generation hybrid males were intermediate between the two parental species for dorsal fin length and fin ray number, suggesting autosomal control of this trait with little effect of dominance by genes from either parental species. Parental species showed clear species differences in their rates of courtship displays. Unlike the pattern for dorsal fin morphology, F1 hybrid males showed a clear distinction in display rates with respect to the direction of the interspecific cross. Male hybrids whose sires were P. latipinna had courtship display rates that were up to three times higher than the rates of displays performed by hybrid males whose fathers were P. mexicana. The distribution of phenotypes between the parental species and that of hybrid males sired by that parental species was nearly identical. Such a pattern suggests the influence of Y-linked genes on the inheritance of courtship display rates in mollies.

Key words

interspecific hybrids mating signals Poecilia latipinna Poecilia mexicana premating reproductive isolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balsano, J.S., E.J. Randle, E.M. Rausch & P.J. Monaco, 1985. Reproductive behavior and maintenance of all-female Poecilia. Environ. Biol. Fish. 12: 251–263.CrossRefGoogle Scholar
  2. Bao, I.Y. & K.D. Kallman, 1982. Genetic control of the hypothalamo-pituitary axis and the effect of hybridization on sexual maturation (Xiphophorus, Pisces, Poeciliidae). J. Exp. Zool. 220: 297–309.CrossRefGoogle Scholar
  3. Beukeboom, L.W. & J. van den Assem, 2001. Courtship and mating behaviour of interspecific Nasonia hybrids (Hymenoptera, Pteromalidae): a grandfather effect. Behav. Gen. 31: 167–177.CrossRefGoogle Scholar
  4. Boake, C.R.B., D. Andreadis & A. Witzel, 2000. Behavioural isolation between two closely related Hawaiian Drosophila species: the role of courtship. Anim. Behav. 60: 495–501.PubMedCrossRefGoogle Scholar
  5. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, New York.Google Scholar
  6. Brett, B.L.H. & D.J. Grosse, 1982. A reproductive pheromone in the Mexican poeciliid fish Poecilia chica. Copeia 1982: 219–223.Google Scholar
  7. Broadhurst, P.L. & J.L. Jinks, 1961. Biometrical genetics and behavior. Psychol. Bull. 58: 337–362.CrossRefGoogle Scholar
  8. Brooks, R., 2002. Variation in mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica 116: 343–358.PubMedCrossRefGoogle Scholar
  9. Cavalcanti, M.J., L.R. Monteiro & P.R.D. Lopes, 1999. Landmark-based morphometric analysis in selected species of serranid fishes (Perciformes: Teleosei). Zool. Stud. 38: 287–294.Google Scholar
  10. Civetta, A. & R.S. Singh, 1998. Sex and speciation: genetic architecture and evolutionary potential of sexual versus nonsexual traits in the sibling species of the Drosophila melanogaster complex. Evolution 52: 1080–1092.CrossRefGoogle Scholar
  11. Constantz, G.D., 1989. Reproductive biology of poeciliid fishes, pp. 33–50 in Ecology and Evolution of the Livebearing Fishes (Poeciliidae), edited by G.K. Meffe & F.F. Snelson Jr. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  12. Coyne, J.A., 1992. Genetics and speciation. Nature 355: 511–513.PubMedCrossRefGoogle Scholar
  13. Coyne, J.A. & H.A. Orr, 1998. The evolutionary genetics of speciation. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 353: 287–305.CrossRefGoogle Scholar
  14. Gavrilets, S. & C.R.B. Boake, 1992. On the evolution of premating isolation after a founder event. Amer. Nat. 152: 706–716.CrossRefGoogle Scholar
  15. Farr, J.A., 1975. The role of predation in the evolution of social behavior of natural populations of the guppy, Poecilia reticulata (Pisces: Poeciliidae). Evolution 29: 151–158.CrossRefGoogle Scholar
  16. Farr, J.A., 1983. The inheritance of quantitative fitness traits in guppies, Poecilia reticulata (Pisces: Poeciliidae). Evolution 37: 1193–1209.CrossRefGoogle Scholar
  17. Farr, J.A., 1989. Sexual selection and secondary sexual differentiation in poeciliids: determinants of male mating success and evolution of female choice, pp. 91–123 in Ecology and Evolution of the Livebearing Fishes (Poeciliidae), edited by G.K. Meffe & F.F. Snelson Jr. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  18. Farr, J.A. & J. Travis, 1986. Fertility advertisement by female sailfin mollies, Poecilia latipinna (Pisces: Poeciliidae). Copeia 1986: 467–472.Google Scholar
  19. Farr, J.A., J. Travis & J.C. Trexler, 1986. Behavioural allo-metry and interdemic variation in sexual behaviour of the sailfin molly, Poecilia latipinna (Pisces: Poeciliidae). Anim. Behav. 34: 497–509.CrossRefGoogle Scholar
  20. Franck, D., 1974. The genetic basis of evolutionary changes in behaviour patterns, pp. 119–140 in The Genetics of Behaviour, edited by J.H.F van Abeelen. Elsevier, New York.Google Scholar
  21. Gabor, C., 1999. Association patterns of sailfin mollies (Poecilia latipinna):it alternative hypotheses. Behav. Ecol. Sociobiol. 46: 333–340.CrossRefGoogle Scholar
  22. Hubbs, C.L., 1933. Species and hybrids of Mollienesia. Aquarium 1:263–268, 277.Google Scholar
  23. Hubbs, C.L., 1936. Fishes of the Yucatan peninsula, pp. 157–287 in The Cenotes of Yucatan, a Sociological and Hydrological Survey, edited by A.S. Pearse, E.P. Creaser & F.G. Hall. Carnegie Inst. Washington Publ. 457.Google Scholar
  24. Kallman, K.D., 1984. A new look at sex determination in poeciliid fishes, pp. 95–171 in Evolutionary Genetics of Fishes, edited by B.J. Turner. Plenum Publ. Co., New York.CrossRefGoogle Scholar
  25. Kallman, K.D., 1989. Genetic control of size at maturity in Xiphophorus, pp. 163–184 in Ecology and Evolution of the Livebearing Fishes (Poeciliidae), edited by G.K. Meffe & F.F. Snelson Jr. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  26. Loy, A., L. Mariani, M. Bertelletti & L. Tunesi, 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages on the two-banded sea bream, Dip-lodus vulgaris (Perciformes, Sparidae). J. Morph. 237: 137–146.Google Scholar
  27. Liley, N.R., 1966. Ethological isolating mechanisms in four sym-patric species of poeciliid fishes. Behaviour 13(suppl.): 1–197.Google Scholar
  28. Lindholm, A. & F. Breden, 2002. Sex chromosomes and sexual selection in poeciliid fishes. Amer. Nat. (in press).Google Scholar
  29. Mather, K. & J.L. Jinks, 1971. Biometrical Genetics: The Study of Continuous Variation. Chapman and Hall, London, 2nd edn.Google Scholar
  30. Noakes, D.L.G., 1986. Genetic basis of fish behaviour, pp. 3–22 in The Behavior of Teleost Fishes, edited by T.J. Pitcher. John Hopkins University Press, Baltimore, MD.CrossRefGoogle Scholar
  31. Orr, H.A., 2001. The genetics of species differences. Trends Ecol. Evol. 16: 343–350.CrossRefGoogle Scholar
  32. Otte, D. & J.A. Endler, 1989. Speciation and its Consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  33. Macdonald, S.J. & D.B. Goldstein, 1999. A quantitative genetic analysis of male sexual traits distinguishing the sibling species Drosophila simulans and D. sechellia. Genetics 153: 1683–1699.PubMedGoogle Scholar
  34. Medlen, A.B., 1951. Preliminary observations on the effects of temperature and light upon reproduction in Gambusia affinis. Copeia 1951: 148–152.Google Scholar
  35. Meyer, M.K., L. Wischnath & W. Foerster, 1985. Lebendgebarende Zierfische Arten der Welt. Mergus-Verlag, Melle, West Germany.Google Scholar
  36. Miller, R.R., 1975. Five new species of Mexican poeciliid fishes of the genera Poecilia, Gambusia, and Poeciliopsis. Occasional Papers of the Museum of Zoology, Univ. Michigan 672: 1–44.Google Scholar
  37. Noor, M.A.F. & C.F. Aquadro, 1998. Courtship songs of Drosophila pseudoobscura and D. persimilis: analysis of variation. Anim. Behav. 56: 115–125.PubMedCrossRefGoogle Scholar
  38. Panhuis, T.M., R. Butlin, M. Zuk & T. Tregenza, 2001. Sexual selection and speciation. Trends Ecol. Evol. 16: 364–371.PubMedCrossRefGoogle Scholar
  39. Parzefall, J., 1969. Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einoschliesslich einer Hohlenform von M. sphenops. Behaviour 33: 1–37.PubMedCrossRefGoogle Scholar
  40. Parzefall, J., 1973. Attraction and sexual cycle of Poeciliidae, pp. 177–187 in Genetics and Mutagenesis of Fish, edited by J.H. Schroder. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  41. Parzefall, J., 1979. Zur Genetik und biologischen Bedeutung des Aggressionsueshaltens von Poecilia sphenops (Pisces, Poeciliidae). Zeitschrift fur Tierpsychologie 50: 399–422.CrossRefGoogle Scholar
  42. Parzefall, J., 1989. Sexual and aggressive behaviour in species hybrids of Poecilia mexicana and Poecilia velifera (Pisces, Poeciliidae). Ethology 82: 101–115.CrossRefGoogle Scholar
  43. Ptacek, M.B., 2000. The role of mating preferences in shaping interspecific divergence in mating signals in vertebrates. Behav. Proces. 51: 111–134.CrossRefGoogle Scholar
  44. Ptacek, M.B., 1998. Interspecific mate choice in sailfin and shortfin species of mollies. Anim. Behav. 56: 1145–1154.PubMedCrossRefGoogle Scholar
  45. Ptacek, M.B. & F. Breden, 1998. Phylogenetic relationships of the mollies (Poeciliidae: Poecilia: Mollienesia) based on mitochondrial DNA sequences. J. Fish Biol. 53(suppl. A): 64–81.CrossRefGoogle Scholar
  46. Ptacek, M.B. & J. Travis, 1996. Interpopulation variation in male mating behaviours in the sailfin molly, Poecilia latipinna. Anim. Behav. 52: 59–71.CrossRefGoogle Scholar
  47. Ptacek, M.B. & J. Travis, 1997. Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51: 1217–1231.CrossRefGoogle Scholar
  48. Regan, C.T., 1913. A revision of the cyprinodont fishes of the subfamily Poeciliinae. Proc. Zool. Soc. Lond. 11: 977–1018.Google Scholar
  49. Rodd, F.H. & M.B. Sokolowski, 1995. Complex origins of variation in the sexual behaviour of male Trinidadian guppies, Poecilia reticulata: interactions between social environment, heredity, body size and age. Anim. Behav. 49: 1139–1159.CrossRefGoogle Scholar
  50. Rohlf, F.J., 1996. Morphometric spaces, shape components, and the effects of linear transformations, pp. 117–129 in Advances in Morphometrics, edited by L.F. Marcus, M. Corti, A. Loy, G. Naylor & D.E. Slice. Proceedings of the 1993 NATO Advances Studies Institute on Morphometrics in II Ciocco, Italy. Plenum, New York.Google Scholar
  51. Rohlf, F.J. & L.F. Marcus, 1993. A revolution in morphometries. Trends Ecol. Evol. 8: 129–132.CrossRefGoogle Scholar
  52. Rohlf, F.J. & D.E. Slice, 1990. Extension of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40–59.CrossRefGoogle Scholar
  53. Ryan, M.J. & B. Causey, 1989. “Alternative” mating behavior in the swordtails Xiphophorus nigrensis and Xiphophorus pygmaeus (Pisces: Poeciliidae). Behav. Ecol. Sociobiol. 24: 341–348.CrossRefGoogle Scholar
  54. Ryan, M.J., D.K. Hews & W.E. Wagner Jr., 1990. Sexual selection on alleles that determine body size in the swordtail Xiphophorus nigrensis. Behav. Ecol. Sociobiol. 26: 231–237.CrossRefGoogle Scholar
  55. Schluter, D., 2001. Ecology and the origin of species. Trends Ecol. Evol. 16: 372–380.PubMedCrossRefGoogle Scholar
  56. Shaw, K.L., 1996. Polygenic inheritance of a behavioral pheno-type: interspecific genetics of song in the Hawaiian cricket genus Laupala. Evolution 50: 256–266.CrossRefGoogle Scholar
  57. Shaw, K.L., 2000. Specific genetics of mate recognition: inheritance of female acoustic preference in Hawaiian crickets. Evolution 54: 1303–1312.PubMedGoogle Scholar
  58. Sumner, I.T., J. Travis & C.D. Wilson, 1994. Methods of female fertility advertisement and variation among males in responsiveness in the sailfin molly (Poecilia latipinna). Copeia 1994: 27–34.Google Scholar
  59. Tomaru, M. & Y. Oguma, 1994. Genetic basis and evolution of species-specific courtship song in the Drosophila auraria complex. Genet. Res. 63: 11–17.PubMedCrossRefGoogle Scholar
  60. Trautman, M.B., 1981. The Fishes of Ohio. Ohio State University, Columbus, OH.Google Scholar
  61. Travis, J., 1994. Size-dependent behavioral variation and its genetic control within and among populations, pp. 165–187 in Quantitative Genetic Approaches to Animal Behavior, edited by C.R.B. Boake. University of Chicago Press, Chicago.Google Scholar
  62. Travis, J. & B.D. Woodward, 1989. Social context and courtship flexibility in male sailfin mollies, Poecilia latipinna (Pisces: Poeciliidae). Anim. Behav. 38: 1001–1011.CrossRefGoogle Scholar
  63. Turelli, M., N.H. Barton & J.A. Coyne, 2001. Theory and speci-ation. Trends Ecol. Evol. 16: 330–343.PubMedCrossRefGoogle Scholar
  64. Turner, B.J., 1982. The evolutionary genetics of a unisexual fish, Poecilia formosa,pp. 265–305 in Mechanisms of Speciation, edited by C. Barigozzi. Alan R. Liss, New York.Google Scholar
  65. Turner, G.F. & M.T. Burrows, 1995. A model of sympatric speciation by sexual selection. Proc. R. Soc. Lond. B. 260: 287–292.CrossRefGoogle Scholar
  66. Via, S., 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16: 381–390.PubMedCrossRefGoogle Scholar
  67. Williams, M.A., A.G. Blouin & M.A.F. Noor, 2001. Courtship songs of Drosophila pseudoobscura and D. persimilis. II. Genetics of species differences. Heredity 86: 68–77.PubMedCrossRefGoogle Scholar
  68. Woodhead, A.D. & N. Armstrong, 1985. Aspects of mating behaviour of male mollies (Poecilia spp.). J. Fish Biol. 27: 593–601.CrossRefGoogle Scholar
  69. Zimmerer, E.J. & K.D. Kallman, 1989. Genetic basis for alternative reproductive tactics in the pygmy swordtail, Xiphophorus nigrensis. Evolution 43: 1298–1307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Margaret B. Ptacek
    • 1
  1. 1.Department of Biological SciencesClemson UniversityClemsonUSA

Personalised recommendations