Advertisement

MöSsbauer Spectroscopy in Studying the Thermally Induced Oxidation of Fe2+ Cations in Iron-Bearing Silicate Minerals

Examples of applications with almandine, pyrope and olivine
  • M. Mashlan
  • R. Zboril
  • K. Barcova
Part of the NATO Science Series book series (NAII, volume 94)

Abstract

The oxidation mechanisms of Fe2+ in different iron-bearing minerals depend strongly on the external conditions, including the heating temperature, mineral crystal unity, pressure conditions and oxidation atmosphere. However, slight differences in the internal features (the total content of iron, distribution of iron in non-equivalent sites, chemical environment and coordination of iron) can also significantly influence the oxidation mechanism. Thus, different oxidation routes can occur depending on the structural ordering and external conditions.

Keywords

Mossbauer Spectroscopy Octahedral Site Ferric Oxide Hyperfine Parameter Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Waerenborgh, J.C., Figueiredo, M.O., Cabrai, J.M.P. and Pereira L.C.J. (1994) Powder XRD structure refinements and Fe-57 Mossbauer-effect study of synthetic Zn1-xFexAl2O4 (0 < x ≤ 1) spinels annealed at different temperatures, Physics and Chemistry of Minerals 21, 460–468.ADSCrossRefGoogle Scholar
  2. 2.
    Schmidbauer, E., Kunzmann, T., Fehr, T. and Hochleitner, R. (2000) Electrical resistivity and Fe-57 Mossbauer spectra of Fe-bearing calcic amphiboles, Physics and Chemistry of Minerals 27, 347–356.ADSCrossRefGoogle Scholar
  3. 3.
    Zboril, R., Mashlan, M. and Petridis, D. (2002) Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications, Chem. Mater., 14, No.3, 969–982.CrossRefGoogle Scholar
  4. 4.
    Vertes, A. and Homonnay, Z. (1997) Mössbauer Spectroscopy of Sophisticated Oxides, Akademiai Kiado, Budapest, p. 88.Google Scholar
  5. 5.
    Tronc, E., Chaneac, C. and Jolivet, P. (1998) Structural and magnetic characterization of epsilon-Fe2O3, J. Solid State Chem. 139, 93–104.ADSCrossRefGoogle Scholar
  6. 6.
    Amthauer, G., Annersten, H. and Hafner, S.S. (1976) The Mössbauer spectrum of 57Fe in silicate garnets, Zeit. Kristallogr. 143, 14–55.Google Scholar
  7. 7.
    Murad, E. and Wagner, F.E. (1987) The mossbauer spectrum of almandine, Physics and chemistry of Minerals 14, 264–269.ADSCrossRefGoogle Scholar
  8. 8.
    Novak, G.A. and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets, Amer. Mineral. 56, 791–825.Google Scholar
  9. 9.
    Ericsson, T, Ameoff, O. and Kalinowski, M. (1999) Cation preferences in thio-olivines (Fel-xMgx)(2)SiS4, x ⇐ 0.30, studied by Mossbauer spectroscopy at room temperature, Neues Jahrbuch Fur Mineralogie-Monatshefte 11, 518–528.Google Scholar
  10. 10.
    Harchand, K.S., Taneja, S.P., Raj, D. and Sharma, P. (1989) Mössbauer Studies of Coal Ash, Fuel Process. Technol. 21, 19–24CrossRefGoogle Scholar
  11. 11.
    Slovenec, D., Popovic, S. and Tadej N. (1997) Heating products of glauconitic materials, Neues Jahrbuch Fur Mineralogie-Abhandlungen 171, 323–339.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. Mashlan
    • 1
  • R. Zboril
    • 2
  • K. Barcova
    • 3
  1. 1.Department of Experimental PhysicsPalacky UniversityCzech Republic
  2. 2.Department of Inorganic and Physical ChemistryPalacky UniversityCzech Republic
  3. 3.Institute of PhysicsTechnical University of OstravaCzech Republic

Personalised recommendations