Qubits as Spectrometers of Quantum Noise

  • R. J. Schoelkopf
  • A. A. Clerk
  • S. M. Girvin
  • K. W. Lehnert
  • M. H. Devoret
Chapter
Part of the NATO Science Series book series (NAII, volume 97)

Abstract

Electrical engineers and physicists are naturally very interested in the noise of circuits, amplifiers and detectors. This noise has many origins, some of which are completely unavoidable. For example, a dissipative element (a resistor) at finite temperature inevitably generates Johnson noise. Engineers long ago developed spectrum analyzers to measure the intensity of this noise. Roughly speaking, these spectrum analyzers consist of a resonant circuit to select a particular frequency of interest, followed by an amplifier and square law detector (e.g. a diode rectifier) which measures the mean square amplitude of the signal at that frequency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.O. Caldeira and A.J. Leggett, Ann. Phys. 149, 374 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    H.B. Callen and T.A. Weiton, Phys. Rev. 83, 34 (1951).ADSMATHCrossRefGoogle Scholar
  3. 3.
    M.H. Devoret, in Quantum Fluctuations, S. Reynaud, E. Giacobino and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1995).Google Scholar
  4. 4.
    V. Bouchiat, D. Vion, P. Joyez, D. Esteve and M. Devoret, Physica Scripta T76, 165 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 886 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Martinis et al., submitted to Phys. Rev. B, 2002.Google Scholar
  7. 7.
    K.W. Lehnert, K. Bladh, L.F. Spietz, D. Gunnarson, D.I. Schuster, P. Delsing, and R.J. Schoelkopf, submitted to Phys. Rev. Lett., 2002.Google Scholar
  8. 8.
    V.B. Braginsky and F. Ya. Khalili, ”Quantum Measurement,” (Cambridge University Press, New York, 1992).)MATHCrossRefGoogle Scholar
  9. 9.
    AJ. Dahm et al., Phys. Rev. Lett. 22, 1416 (1969); D. Rogovin and D.J. Scalapino, Ann. Phys. 86, 1 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    R.J. Schoelkopf, P.J. Burke, A.A. Kozhevnikov, D.E. Prober, and M.J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    R. Aguado and L.P. Kouwenhoven, Phys. Rev. Lett. 84, 1986 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    L. S. Levitov, H. Lee and G. B. Lesovik, J. Math. Phys. 37, 4845 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    M.H. Devoret and R.J. Schoelkopf, Nature 406,1039 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Johansson, Andreas Käck, and Göran Wendin, Phys. Rev. Lett. 88, 046802 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    H. Schoeller and G. Schön, Phys. Rev. B, 18436 (1994).Google Scholar
  16. 16.
    Y. Makhlin, B. Shnirman and G. Schön, Phys. Rev. Lett. 85, 4578 (2000); ibid., Rev. Mod. Phys. 73, 357 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Clerk, S. M. Girvin, A. K. Nguyen and A. D. Stone, Phys. Rev. Lett., in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. J. Schoelkopf
    • 1
  • A. A. Clerk
    • 1
  • S. M. Girvin
    • 1
  • K. W. Lehnert
    • 1
  • M. H. Devoret
    • 1
  1. 1.Departments of Applied Physics and PhysicsYale UniversityNew HavenUSA

Personalised recommendations